Cho a>=2
Tim gtnn cua A=a+1/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)
Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)
Dau '=' xay ra \(a=b=\frac{1}{2}\)
Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)
\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)
\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)
\(\ge24+2+2\cdot4+2\cdot9=52\)
Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)
A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)
\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)
Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là \(\frac{35}{36}\)
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
Vậy GTNN là \(A=\dfrac{5}{2}\) dấu = xảy ra khi \(a^2=2\)
Ta có: \(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\dfrac{a^2}{4}+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\)
Do \(a^2\ge2\) => \(\dfrac{3a^2}{4}\ge\dfrac{3}{4}.2=\dfrac{3}{2}\) (*)
Áp dụng BĐT cô-si :
\(\dfrac{a^2}{4}+\dfrac{1}{a^2}\ge2\sqrt{\dfrac{a^2}{4}.\dfrac{1}{a^2}}=2.\dfrac{1}{2}=1\) (**)
Từ (*) và (**) suy ra :
\(\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3}{2}+1=\dfrac{5}{2}\)
<=> \(A\ge\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(a^2=2\) <=> \(a=\pm\sqrt{2}\)
Vậy GTNN của \(A=a^2+\dfrac{1}{a^2}\) là \(\dfrac{5}{2}\) khi \(a=\pm\sqrt{2}\)
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
1/a+a/4+3/4.a
2 cái đầu dùng cosi,,cái 3 dùng a>=2
dấu = khi a=2
ta có A=a+1/a=1+(1/a)
có:a>=2 =>min=3/2 tại a=2