K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

1/a+a/4+3/4.a 

2 cái đầu dùng cosi,,cái 3 dùng a>=2

dấu = khi a=2

4 tháng 4 2016

ta có A=a+1/a=1+(1/a)

có:a>=2 =>min=3/2 tại a=2

23 tháng 3 2016

=1+1/a+a/4-a/4>=1+1-1/2=3/2

khi a=2

31 tháng 8 2019

Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)

Dau '=' xay ra \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)

30 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)

\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)

\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)

\(\ge24+2+2\cdot4+2\cdot9=52\)

Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)

26 tháng 10 2017

A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)

\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)

Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là  \(\frac{35}{36}\)

26 tháng 10 2017

hình như cái khúc (x+1/2)^2 phải là (x-1/2)^2 chứ bạn mk k hỉu rõ bạn giải thích giùm mk nhé

NV
27 tháng 9 2019

\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)

\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)

4 tháng 5 2017

\(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)

Vậy GTNN là \(A=\dfrac{5}{2}\) dấu = xảy ra khi \(a^2=2\)

4 tháng 5 2017

Ta có: \(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\dfrac{a^2}{4}+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\)

Do \(a^2\ge2\) => \(\dfrac{3a^2}{4}\ge\dfrac{3}{4}.2=\dfrac{3}{2}\) (*)

Áp dụng BĐT cô-si :

\(\dfrac{a^2}{4}+\dfrac{1}{a^2}\ge2\sqrt{\dfrac{a^2}{4}.\dfrac{1}{a^2}}=2.\dfrac{1}{2}=1\) (**)

Từ (*) và (**) suy ra :

\(\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3}{2}+1=\dfrac{5}{2}\)

<=> \(A\ge\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a^2=2\) <=> \(a=\pm\sqrt{2}\)

Vậy GTNN của \(A=a^2+\dfrac{1}{a^2}\)\(\dfrac{5}{2}\) khi \(a=\pm\sqrt{2}\)

NV
27 tháng 9 2019

\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)

\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)