K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

3069/512 nha

15 tháng 11 2023

    G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211

2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 2+ 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)

G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210

G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)

G = 211 - 2

G = 2048 - 2 (đpcm)

15 tháng 11 2023

b, 

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)

Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)

9 tháng 1 2024

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1 2024

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

17 tháng 3 2018

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

9 tháng 7 2023

a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)

\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)

Vậy: \(1+2^2+2^3+...+2^{10}=2045\)

b) 

a] \(60-3\left(x-1\right)=2^3\cdot3\)

\(\Rightarrow60-3\left(x-1\right)=24\)

\(\Rightarrow3\left(x-1\right)=36\)

\(\Rightarrow x-1=12\)

\(\Rightarrow x=13\)

b] \(\left(3x-2\right)^3=2\cdot2^5\)

\(\Rightarrow\left(3x-2\right)^3=2^6\)

\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)

\(\Rightarrow3x-2=2^2\)

\(\Rightarrow3x=6\)

\(x=2\)

c] \(5^{x+1}-5^x=500\)

\(\Rightarrow5^x\left(5-1\right)=500\)

\(\Rightarrow5^x\cdot4=500\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

d] \(x^2=x^4\)

\(\Rightarrow x=x^2\)

\(\Rightarrow x-x^2=0\)

\(\Rightarrow x\left(1-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

9 tháng 7 2023

giúp mình đi các bạn

 

3 tháng 8 2020

A = 2 + 22 + 23 + ... + 210 (10 số hạng)

 = (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)

= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)

= (1 + 2)(2 + 23 + ... + 29)

= 3(2 + 23 + ... + 29\(⋮\)3

=> A  \(⋮\)3

3 tháng 8 2020

Đề bài có bị sai không vậy ạ.Mình thấy hơi sai sai

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

24 tháng 6 2015

 

Vì: \(\frac{3}{21}=\frac{3}{21}\)

\(\frac{3}{22}\) < \(\frac{3}{21}\)

\(\frac{3}{23}\) < \(\frac{3}{21}\)

\(\frac{3}{24}\)<\(\frac{3}{21}\)

\(\frac{3}{25}\)\(\frac{3}{21}\)

.....

\(\frac{2}{29}\)<\(\frac{3}{21}\)

\(\frac{2}{30}\)<\(\frac{3}{21}\)

Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)

Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)

Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)

=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)

Vậy E < M

20 tháng 1 2016

30

21

69

78

35

27

105

-13

22 tháng 11 2021

30

21

69

78

35

27

105

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

13 tháng 12 2020

Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2

tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2