a) Cho a > b > 0 và a2 - 6b2 =ab Tính giá trị của phân thức \(A=\frac{2ab}{a^2-7b^2}\)
b) Cho a , b , c đôi một khác nhau và a + b + c = 0 chứng mimh rằng \(\frac{9\left(a^2+b^2+c^2\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}=3\)
Vì a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 = -2(ab + bc + ca)
Khi đó \(\frac{9\left(a^2+b^2+c^2\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}=\frac{-18\left(ab+bc+ca\right)}{2\left(a^2+b^2+c^2-ab-bc-ca\right)}\)
\(=\frac{-18\left(ab+bc+ca\right)}{-6\left(ab+bc+ca\right)}=3\)
a2 - 6b2 = ab
<=> (a + 2b)(a - 3b) = 0
<=> \(\orbr{\begin{cases}a=-2b\left(\text{loại}\right)\\a=3b\left(tm\right)\end{cases}}\)
Khi đó \(A=\frac{2ab}{a^2-7b^2}=\frac{6b^2}{2b^2}=3\)