cho t.giác ABC có AB=AC, trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho AE=AF. chứng minh rằng BC+EF<2BF
bài này mk cần gấp, bn nào biết thì giúp mk vs, giải thích rõ ràng nha. cảm ơn nhìu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
AB+BF=AF
AE+EC=AC
mà AB=AE và AC=AF
nên BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}\) chung
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
\(\widehat{DFB}=\widehat{DCE}\)
Do đó: ΔDBF=ΔDEC
=>DB=DE
Xét ΔABD và ΔAED có
AB=AE
BD=ED
AD chung
Do đó: ΔABD=ΔAED
=>\(\widehat{BAD}=\widehat{EAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
b: Xét ΔABM và ΔAEM có
AB=AE
\(\widehat{BAM}=\widehat{EAM}\)
AM chung
Do đó: ΔABM=ΔAEM
=>MB=ME
AC-AB=EC
mà EC>MC-ME
và MC=MF
nên AC-AB>MC-ME=MC-MB(ĐPCM)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABC có
AE/AB=AF/AC
Do đó: EF//BC
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )