Tìm tất cả các giá trị của tham số thực m để phương trình 3sinx - 5cosx = m vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình viết lại m 2 − 5 m + 6 x = m − 1
Phương trình vô nghiệm khi m 2 − 5 m + 6 = 0 m − 1 ≠ 0 ⇔ m = 2 m = 3 m ≠ ⇔ m = 2 m = 3
Đáp án cần chọn là: B
Điều kiện:
cos x # 0 ⇔ x # π 2 + k π , k ∈ ℝ .
Ta có:
Đặt t=log|cosx|. Do 0 < | cos x | ≤ 1 nên log cos x ≤ 0 hay t ∈ ( - ∞ ; 0 ]
Phương trình trở thành t 2 - 2 m t - m 2 + 4 = 0 *
có ∆ ' = m 2 + m 2 - 4 = 2 m 2 - 4
Phương trình đã cho vô nghiệm nếu và chỉ nếu phương trình (*) vô nghiệm hoặc có 2 nghiệm (không nhất thiết phân biệt) t 1 , t 2 thỏa mãn 0 < t 1 ≤ t 2
TH1: (*) vô nghiệm
TH2: (*) có hai nghiệm thỏa mãn 0 < t 1 ≤ t 2
Kết hợp hai trường hợp ta được m ∈ - 2 ; 2
Chọn đáp án C.
\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
Chọn C.
Phương pháp:
- Đặt t = log cos x và tìm điều kiện của t .
- Thay vào phương trình đã cho đưa về phương trình ẩn t .
- Biến đổi điều kiện bài toán về điều kiện của phương trình vừa có được và tìm m .