K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

\(x+y+1=0\\ \Leftrightarrow x+y=-1\)

Thay x+y=-1 vào C ta có:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)

\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)

\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)

\(\Rightarrow C=0+0+1\)

\(\Rightarrow C=1\)

28 tháng 1 2022

\(x+y+1=0\) =>\(x+y=-1\)

- Thay \(x+y=-1\) vào C ta được:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)=1

19 tháng 8 2018

Bài tập: Chia đa thức cho đơn thức | Lý thuyết và Bài tập Toán 8 có đáp án

Giá trị biểu thức tại x = -2; y = 102; z= 102 là:

Bài tập: Chia đa thức cho đơn thức | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D

14 tháng 4 2023

A       = 2\(x^2\)y + \(xy\) - 3\(xy\)

Thay \(x\) = -2; y = 4 vào biểu thức A ta có: 

A      =  2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4

A     = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4

A     = 8 \(\times\) 4 - 8 + 24

A     =  32 - 8 + 24

A    =  24 + 24

A    =    48

14 tháng 4 2023

B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )

Thay \(x\) = - 2 vào biểu thức B ta có:

B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}

B = { 2 \(\times\) 4  - 3} - { 4 - 10 - 1}

B = { 8 - 3} - { 4 - 11}

B = 5 - (-7)

B = 5 + 7

B = 12

3 tháng 2 2018

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17

 

17 tháng 4 2017

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17

Bài 2: 

a: \(x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

2 tháng 10 2021

a(b+3)-b(3+b)

=(3+b)(a-b)

Thay số, có: (3+1997).(2003-1997)

= 2000.6 =12000

xy(x+y)-2x-2y

xy(x+y)- 2(x+y)

(x+y).(xy-2)

Thay số, co: 7. (8-2)

7.4=28

13 tháng 10 2021
Lấy 1 -1 2
2 tháng 3 2022

\(6x^2y^2+x^2y^2-4x^2y^2=\left(6+1-4\right)x^2y^2=3x^2y^2\)

Thay x=3, y=-1 vào biểu thức ta có:
\(3x^2y^2=3.3^2.\left(-1\right)^2=3.9.1=27\)

15 tháng 4 2022

ta thay \(x=-\dfrac{1}{3};y=\dfrac{1}{2}\)  vào biểu thức ta đc

\(2.\left(-\dfrac{1}{3}\right)^3-5.\left(-\dfrac{1}{3}\right)^2.\left(\dfrac{1}{2}\right)^2-2.\left(-\dfrac{1}{3}\right)^3\cdot\dfrac{1}{2}\)

\(=-\dfrac{2}{9}-5\cdot\dfrac{1}{9}\cdot\dfrac{1}{4}+\dfrac{2}{9}\cdot\dfrac{1}{2}\)

\(=-\dfrac{2}{9}-\dfrac{5}{36}+\dfrac{1}{9}=-\dfrac{1}{4}\)