Cho x,y thỏa mãn \(5x^2+\frac{5}{4}y^2-3xy+\frac{2}{3}x+\frac{1}{3}y+\frac{1}{9}=0\)
Vậy \(6x+3y-2010=...\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm được x= -1/6 ; y = -1/3 . Suy ra 6x + 3y - 2010 = -1 + (-1) -2010 = -2012
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
câu 6 :
số hs nữ = 34 hs
số học sinh nam giỏi = hs nữ khá
=> số hs giỏi = số hs giỏi nữ+số học sinh nam giỏi = số hs nữ giỏi + số học sinh nữ khá = số học sinh giỏi cả lớp =34
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 vào \(\frac{2x+1}{5}\), ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5
KL: x + y = 5
\(3xy-1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)
\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)
Và \(xy+x+y+1=4xy\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)
Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)
\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)
Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\)
Nên hàm số nghịch biến với \(t\ge1\)
\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)
Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)
Suy ra
\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5