K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

\(=\dfrac{2^5\cdot5^3}{2^6\cdot5^2}=\dfrac{5}{2}\)

8 tháng 8 2023

a) \(\dfrac{2^6\cdot5^5}{10^5}\)

\(=\dfrac{2^6\cdot5^5}{2^5\cdot5^5}\)

\(=2\)

b) \(\dfrac{3^6\cdot5^7}{15^6}\)

\(=\dfrac{3^6\cdot5^7}{3^6\cdot5^6}\)

\(=5\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{5}}=\dfrac{z}{\dfrac{1}{2}}=\dfrac{x-z}{\dfrac{2}{3}-\dfrac{1}{2}}=\dfrac{-13}{2}:\dfrac{1}{6}=-39\)

Do đó: x=-26; y=-117/5; z=-39/2

11 tháng 7 2023

<3

 

\(\dfrac{2^6.18+2^7}{2^6.5^2-2^6.3}=\dfrac{2^6\left(18+2\right)}{2^6.\left(5^2-3\right)}=\dfrac{20}{5^2-3}=\dfrac{20}{25-3}=\dfrac{20}{22}=\dfrac{10}{11}\)

NV
15 tháng 4 2022

\(=\dfrac{2^6.18+2^6.2}{2^6.25-2^6.3}=\dfrac{2^6\left(18+2\right)}{2^6\left(25-3\right)}=\dfrac{18+2}{25-3}=\dfrac{20}{22}=\dfrac{10}{11}\)

11 tháng 2 2018

\(5D=1+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+...+\dfrac{1}{6.5^{99}}\)

\(6D=\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{6.5^{100}}\)

\(D=\dfrac{\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{36.5^{100}}}{6}\)

5 tháng 10 2018

/ là dấu gì vậy bạn

5 tháng 10 2018

giá trị tuyệt đối!

30 tháng 5 2021

a) `(-63)/72 = (-63:9)/(72:9)=(-7)/8`

b) `20/(-140) = (20:20)/(-140:20) = 1/(-7)=(-1)/7`

c) `(3.10)/(5.24) =(3.2.5)/(5.2 .3.4)=1/4`

d) `(6.5-6.2)/(6+3)=18/9=2`

30 tháng 5 2021

cảm ơn bạn rất nhiều !!!!

21 tháng 1 2021

@Nguyễn Việt Lâm giúp em với

 

NV
21 tháng 1 2021

\(\dfrac{1}{u_n-1}=\dfrac{1}{\dfrac{2^n-5^n}{2^n+5^n}-1}=\dfrac{2^n+5^n}{-2.5^n}=-\dfrac{1}{2}\left[\left(\dfrac{2}{5}\right)^n+1\right]\)

\(\Rightarrow S_n=-\dfrac{1}{2}\left[\left(\dfrac{2}{5}\right)^1+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n+n\right]\)

Lại có: \(\left(\dfrac{2}{5}\right)^1+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n=\dfrac{2}{5}.\dfrac{1-\left(\dfrac{2}{5}\right)^n}{1-\dfrac{2}{5}}=\dfrac{2}{3}\left[1-\left(\dfrac{2}{5}\right)^n\right]\)

\(\Rightarrow S_n=-\dfrac{1}{2}\left[\dfrac{2}{3}-\dfrac{2}{3}\left(\dfrac{2}{5}\right)^n+n\right]=...\)

14 tháng 8 2017

ta có : \(A=6.7+6.7^2+6.7^3+...+6.7^{100}\)

\(\Rightarrow7A=7.\left(6.7+6.7^2+6.7^3+...+6.7^{100}\right)\)

\(7A=6.7^2+6.7^3+6.7^4+...+6.7^{101}\)

\(\Rightarrow7A-A=6A=\left(6.7^2+6.7^3+6.7^4+...+6.7^{101}\right)-\left(6.7+6.7^2+6.7^3+...+6.7^{100}\right)\)

\(6A=6.7^{101}-6.7=6\left(7^{101}-7\right)\Leftrightarrow A=7^{101}-7\)

vậy \(A=7^{101}-7\)

ta có : \(B=6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\)

\(\Rightarrow5B=5\left(6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\right)\)

\(5B=6.5^2-6.5^3+6.5^4-...+6.5^{100}-6.5^{101}\)

\(\Rightarrow5B+B=6B=6.5^2-6.5^3+6.5^4-...+6.5^{100}-6.5^{101}+6.5-6.5^2+6.5^3-...+6.5^{99}-6.5^{100}\)

\(6B=6.5-6.5^{101}=6.\left(5-5^{101}\right)\Leftrightarrow B=5-5^{101}\)

vậy \(B=5-5^{101}\)

14 tháng 8 2017

\(A=6\cdot7+6\cdot7^2+6\cdot7^3+...+6\cdot7^{100}\\ =6\cdot\left(7+7^2+7^3+...+7^{100}\right)\\ =\left(7-1\right)\cdot\left(7+7^2+7^3+...+7^{100}\right)\\ =\left(7-1\right)\cdot7+\left(7-1\right)\cdot7^2+\left(7-1\right)\cdot7^3+...+\left(7-1\right)\cdot7^{100}\\ =7^2-7+7^3-7^2+7^4-7^3+...+7^{101}-7^{100}\\ =7^{101}-7=7\cdot\left(7^{100}-1\right)\)

\(B=6\cdot5-6\cdot5^2+6\cdot5^3-...+6\cdot5^{99}-6\cdot5^{100}\\ =6\cdot\left(5-5^2+5^3-...+5^{99}-5^{100}\right)\\ =\left(5+1\right)\cdot\left(5-5^2+5^3-...+5^{99}-5^{100}\right)\\=\left(5+1\right)\cdot5-\left(5+1\right)\cdot5^2+\left(5+1\right)\cdot5^3-...+\left(5+1\right)\cdot5^{99}-5^{100}\\ =5^2+5-5^3-5^2+5^4+5^3+...+5^{100}+5^{99}-5^{101}-5^{100}\\ =5-5^{101}\\ =5\cdot\left(1-5^{100}\right)\)