K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10

Lời giải:

Giả sử $p$ không chia hết cho 3. Khi đó do $p$ nguyên tố nên $p$ không chia hết cho 3.

Nếu $p$ chia 3 dư 1. Đặt $p=3k+1$

$\Rightarrow p+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ nên $p+2$ không là số nguyên tố (trái với đề) 

Nếu $p$ chia 3 dư 2. Đặt $p=3k+2$

$\Rightarrow p+4=3k+3=3(k+2)\vdots 3$. Mà $p+4>3$ nên $p+4$ không là số nguyên tố (trái với đề)

Vậy $p=3$

5 tháng 8 2015

Giả sử còn 3 số lẻ liên tiếp là 3 số nguyên tố khác 3,5,7 là 2a+1,2a+3,2a+5.

Vì đây là 3 số lẻ liên tiếp nên sẽ có 1 số trong dãy số 2a+1,2a+3,2a+5 chia hết cho 3. Vì 2a+1>3 =>2a+3,2a+5>3 => có 1 số bất kì chia hết cho 3 nên là hợp số. do đó điều giả sử trên sai. Vậy chỉ có 3 số 3,5,7 là 3 số nguyên tố thỏa mãn bài toán

8 tháng 12 2021
Xin lỗi nha mik cũng chịu tự nhiên lướt ngang qua lại thấy 😅
8 tháng 12 2021

5676538564875x787866688089=bao nhieu mn oi

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

15 tháng 11 2015

vì trong 3 số lẻ lt chắc chắn có 1 số chi hết cho 3

suy ra trong 3 số lẻ lt >7 thì tồn tại 1 trong 3 số chia hết cho 3 và có thương >2

15 tháng 11 2015

vì tròg 3 số lẻ liên tiếp tồn tại 1 số chia hết cho 3

suy ra 1 trong 3 số lẻ liên tiếp >7 có 1 số chia hết cho 3 và có thương > 1

vậy ko có trường hợp như trong đề bài (dpcm)

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

 

4 tháng 12 2015

Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.

Gọi đó là p1, p2, ..., pk.

Xét A = 4*p1*p2*...*pk - 1  

A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.

Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.

Vậy có vô hạn số nguyên tố dạng 4k + 3

**** nhe