CMR : abc - cba chia hết cho 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
abc chia hết cho 27
suy ra 100a + 10b + c chia hết cho 27
suy ra 10(100a + 10b + c) chia hết cho 27
suy ra 1000a + 100b + 10c chia hết cho 27
suy ra 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Ta co
abc-cba=(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c
=99.(a-c)=3.33.(a-c) chia het cho 3
Chung to
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99c )
= 99( a - c )
Vì 99 chia hết cho 3 => abc - cba chia hết cho 3
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99a )
= 99 ( a - c )
Vì 99 chia hết cho 99 => 99 ( a - c ) chia hết cho 99
=> abc - cba chia hết cho 99 ( đpcm )
Đặt A=abc
Ta có:A=100a+10b+c-(100c+10b+a)
= 99a-99c=99(a-c)
A/99= a-c
Vậy A chia hết cho 99
Ta có : abc - cba = 100a + 10b + c - 100c + 10b + a = 99a + 99c chia hết cho 99
abc chia hết cho 27 => 100a + 10 b + c chia hết cho 27
100a + 10b + c = 81a + (19a + 10b+ c). Vì 81a chia hết cho 27 nên 19a + 10b + c chia hết cho 27
Ta có: bca = 100b + 10c + a = 81b + (19b + 10c + a) = 81b + (19a + 10b + c) + (9b + 9c - 18a)
= 81b + (19a + 10b + c) + 9.(b +c - 2a) (1)
Nhận xét: 81b và (19a + 10b + c) đều chia hết cho 27(2)
b+ c - 2a = (b+c+a) - 3a luôn chia hết cho 3 (Vì abc chia hết cho 27 nên chia hết cho 3 => a+b + c chia hết cho 3)
=> 9.(b+c- 2a) chia hết cho 27 (3)
(1+2+3) => bca chia hết 27
ý đàu tiên:
ta có: \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99c )
= 99 ( a - c )
Vì 99 chia hết cho 99 , mà 99 chia hết cho 33 => 99( a - c ) chia hết cho 33
=> abc - cba chia hết cho 33
sao lai tu tra loi vay ban