tìm các số tự nhiên n sao cho giá trị của biểu thức (n+2)^2-(n-3)(n+3)không lớn hơn 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : \(A=\left(n+3\right)\text{ : }n=1+\frac{3}{n}\)
a, A có giá trị lớn nhất khi \(\frac{3}{n}\)đạt GTLN \(\Rightarrow\text{ }n\)đạt GTNN
Có 2 trường hợp : n đạt giá trị âm nhỏ nhất, n đạt giá trị dương nhỏ nhất
* Với n đạt giá trị âm nhỏ nhất \(\Rightarrow\text{ A âm}\)
* Với n đạt giá trị dương nhỏ nhất \(\Rightarrow\text{ A dương}\)
Vì \(A\text{ dương }>A\text{ âm nên A đạt GTLN khi n = 1 }\Rightarrow\text{ }A=4\)
b, Biểu thức \(A=1+\frac{3}{n}\) có giá trị là số tự nhiên khi \(3\text{ }⋮\text{ }n\text{ }\Rightarrow\text{ }n\inƯ\left(3\right)=\left\{\pm1\text{ ; }\pm3\right\}\)
\(A=\frac{n+3}{n}\)
\(=1+\frac{3}{n}>1\)
b) Để A là 1 số tự nhiên thì \(\frac{3}{n}\in Z\)
\(\Rightarrow n\inƯ\left(3\right)\)
\(\Rightarrow n\in\left(-1;1;-3;3\right)\)
n+3/3=n/3+1 (1)
ta có tử càng lớn thì ps càng lớn
vì k co số tn lớn nhất nên n thuộc rỗng
b, theo (1) ta có
vì 1 là stn nên để a là stn thì n/3 cũng phải là số tn
để n/3 là stn thì n chia hết cho 3
=> n thuộc Ư(3)
Theo đề bài ta có bpt : \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le50\)
\(\Leftrightarrow n^2+4n+4-n^2+9\le50\)
\(\Leftrightarrow4n\le37\)
\(\Leftrightarrow n\le9,25\).