K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2024

\(2sinx.sin3x+4m.sin2x-cos2x-m^2+1\ge0;\forall x\)

\(\Leftrightarrow-cos4x+4m.sin2x-m^2+1\ge0\)

\(\Leftrightarrow2sin^22x+4m.sin2x-m^2\ge0\)

\(\Leftrightarrow2t^2+4m.t-m^2\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\left(t+m\right)^2\ge\dfrac{3m^2}{2}\)

\(\Rightarrow\left[{}\begin{matrix}t+m\ge\sqrt{\dfrac{3m^2}{2}}\\t+m\le-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t\ge-m+\sqrt{\dfrac{3m^2}{2}}\\t\le-m-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\)

Điều này đúng với mọi \(t\in\left[-1;1\right]\) khi:

\(\left[{}\begin{matrix}-1\ge-m+\sqrt{\dfrac{3m^2}{2}}\left(1\right)\\1\le-m-\sqrt{\dfrac{3m^2}{2}}\left(2\right)\end{matrix}\right.\)

- Xét (1), nếu \(m\le0\Rightarrow-m\ge0\Rightarrow-m+\sqrt{\dfrac{3m^2}{2}}>0\) (ktm)

Với \(m>0\Rightarrow-1\ge-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\le-2-\sqrt{6}\)

- Xét (2), với \(m>0\Rightarrow-m-\sqrt{\dfrac{3m^2}{2}}< 0\) (ktm)

Với \(m< 0\Rightarrow1\le-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\ge2+\sqrt{6}\)

Vậy \(\left[{}\begin{matrix}m\le-2-\sqrt{6}\\m\ge2+\sqrt{6}\end{matrix}\right.\)

Cách tam thức có vẻ tốt hơn cách này

9 tháng 1 2024

Anh cho em cách tam thức giống hôm qua anh giúp em với ạ!

14 tháng 2 2022

Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)

\(\Leftrightarrow mx-2x+2m-3\ge0\)

\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)

\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)

\(\Rightarrow1\le m\le\dfrac{11}{6}\)

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

NV
22 tháng 10 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)

\(\Rightarrow x\in[m-1;2m)\)

Để hàm xác định trên (3;4)

\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)

\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)

NV
8 tháng 1 2024

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

8 tháng 1 2024

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/tim-m-de-ham-so-sqrtsin4xcos4x4sinxcosxm-5-xac-dinh-tren-r.8744969085814

NV
22 tháng 12 2022

Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:

\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)

\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)

\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)

Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)

\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)

\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)

\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)

\(\Rightarrow m< 0\)

22 tháng 12 2022

Em cảm ơn anh ạ! 

Anh giúp em câu này nữa nhá anh em ra -4a^2 

https://hoc24.vn/cau-hoi/cho-hinh-thang-vuong-abcd-duong-cao-ab-2a-day-lon-bc-3a-day-nho-ad-2a-tinh-tich-vo-huong-vecto-ab-vecto-cd.7396640395536

NV
24 tháng 12 2020

\(\Leftrightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx+4m-3\ge0\) ;\(\forall x\)

\(\Leftrightarrow m\ge\dfrac{sinx+2cosx+3}{2sinx-cosx+4}=P\)

\(\Leftrightarrow m\ge P_{max}\)

Ta có: \(P=\dfrac{sinx+2cosx+3}{2sinx-cosx+4}\Leftrightarrow\left(2P-1\right)sinx-\left(P+2\right)cosx=3-4P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(3-4P\right)^2\)

\(\Leftrightarrow11P^2-24P+4\le0\)

\(\Rightarrow\dfrac{2}{11}\le P\le2\)

\(\Rightarrow m\ge2\)

18 tháng 2 2021

\(\left\{{}\begin{matrix}m\le x\\x\le3\end{matrix}\right.\Rightarrow m\le3\Rightarrow\left[m;3\right]\) 

Vay \(m\le3\) thi ham so co tap xd la 1 doan tren truc so

P/s: Ve cai truc so ra la hieu