x(x-1).x(x-1)=(x-2)xx(x-1)
tìm chữ số x va tự luận cách giải mn giúp minh
gấp/////gấp
*lưu ý x(x-1) với (x-2)xx(x-1) là 1so tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Phép nhân có tận cùng là 7 thì chỉ có là 9 x 3
Vậy: X đầu tiên = 9
Hai X còn lại có tận cùng là 3
Ta có: 9 x X3 = 297
Ta lại có: X3 = 297 : 9 = 33
=> X x XX = 9 x 33 = 297
2:
Gọi độ dài AB là x
Thời gian đi là x/50
Thời gian về là x/40
Theo đề, ta có: x/50+x/40=5,4
=>x=120
a) Ta đặt \(P\left(x\right)=x^2+x+1\)
\(P\left(x\right)=x^2+x-20+21\)
\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)
Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\) nên \(\left(x+5\right)\left(x-4\right)⋮3\).
Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)
Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)
b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)
Nếu \(y=0\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)
a) Ta đặt
�
(
�
)
=
�
2
+
�
+
1
P(x)=x
2
+x+1
�
(
�
)
=
�
2
+
�
−
20
+
21
P(x)=x
2
+x−20+21
�
(
�
)
=
(
�
+
5
)
(
�
−
4
)
+
21
P(x)=(x+5)(x−4)+21
Giả sử tồn tại số tự nhiên
�
x mà
�
(
�
)
⋮
9
P(x)⋮9
⇒
�
(
�
)
⋮
3
⇒P(x)⋮3. Do
21
⋮
3
21⋮3 nên
(
�
+
5
)
(
�
−
4
)
⋮
3
(x+5)(x−4)⋮3.
Mà 3 là số nguyên tố nên suy ra
[
�
+
5
⋮
3
�
−
4
⋮
3
x+5⋮3
x−4⋮3
Nếu
�
+
5
⋮
3
x+5⋮3 thì suy ra
�
−
4
=
(
�
+
5
)
−
9
⋮
3
x−4=(x+5)−9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Nếu
�
−
4
⋮
3
x−4⋮3 thì suy ra
�
+
5
=
(
�
−
4
)
+
9
⋮
3
x+5=(x−4)+9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9
b) Vì x^2+x+1⋮̸9 nên
�
≤
1
⇒
�
∈
{
0
;
1
}
y≤1⇒y∈{0;1}
Nếu
�
=
0
⇒
�
2
+
�
+
1
=
1
y=0⇒x
2
+x+1=1
⇔
�
(
�
+
1
)
=
0
⇔x(x+1)=0
⇔
[
�
=
0
(
�
ℎ
ậ
�
)
�
=
−
1
(
�
�
ạ
�
)
⇔[
x=0(nhận)
x=−1(loại)
Nếu
�
=
1
y=1
⇒
�
2
+
�
+
1
=
3
⇒x
2
+x+1=3
⇔
�
2
+
�
−
2
=
0
⇔x
2
+x−2=0
⇔
(
�
−
1
)
(
�
+
2
)
=
0
⇔(x−1)(x+2)=0
⇔
[
�
=
1
(
�
ℎ
ậ
�
)
�
=
−
2
(
�
�
ạ
�
)
⇔[
x=1(nhận)
x=−2(loại)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)
\(M=\frac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
a.Ta co:\(x^2-x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\left(n\right)\end{cases}}\)
\(\Rightarrow M=\frac{1-2}{1}=-1\)
b.De \(M\in Z\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}}\in Z\Rightarrow\sqrt{x}-2⋮\sqrt{x}\Rightarrow x=4\)
Giải:
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{x.\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{16}{99}:\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{3}-\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{99}\)
\(\Rightarrow x+2=99\)
\(x=99-2\)
\(x=97\)
Chúc em học tốt!
\(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{16}{99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(=\dfrac{2}{3x5}\)\(+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}+.....+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}=>x=97\)
`a, 2/3 +3/4 = (8+9)/12=17/12.`
`1 1/3+4/5 = 4/3 + 4/5 = (20+12)/15=32/15`.
`=> x=2.`
`b, 5/6-1/4=(20-6)/24=7/12`.
`2 1/3-2/5= 7/3-2/5 = (35-6)/15=29/15`.
`=> x=1`.