K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Áp dụng bất đẳng thức Cô-si với số x>0

Ta có :

\(x + \dfrac{1}{x} \geq 2\sqrt{x. \dfrac{1}{x}} = 2.\sqrt{1} = 2\)

Vậy min của A là 2 khi \(x = \dfrac{1}{x} \Leftrightarrow x = 1\)

4 tháng 3 2021

\(\dfrac{x+1}{x}\) hay \(x+\dfrac{1}{x}\) ạ ?

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

Áp dụng BĐT AM-GM:

$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$

Vậy $P_{\min}=2\sqrt{2}+2$

Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$

------------------------

Bổ sung ĐK: $a>1$

$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$

$=(a-1)+\frac{2}{a-1}+2$

$\geq 2\sqrt{2}+2$ (AM-GM)

Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$

17 tháng 3 2021

Cô ơi giúp em câu em vừa gửi ạ

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

14 tháng 5 2018

\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\ge2+x+y+\frac{4}{x+y}+2\)

\(=4+\frac{2}{x+y}+\left(x+y\right)+\frac{2}{x+y}\)\(\ge4+2\sqrt{2}+\frac{2}{x+y}\)

Ta lại có 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)

Suy ra \(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)

Đẳng thức xảy ra <=> \(x=y=\frac{1}{\sqrt{2}}\)

20 tháng 7 2017

Ta có :

\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)

Dấu "=" xảy ra <=> \(x=y=a\)

Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)