K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AICN có

M là trung điểm của AC

M là trung điểm của IN

Do đó: AICN là hình bình hành

mà \(\widehat{AIC}=90^0\)

nên AICN là hình chữ nhật

10 tháng 1 2022

Vì AM = CM và IM = NM ( N đối xứng với I qua M )

=> Tứ giác AICN là hbh

Mà AI\(\perp\) BC ( tam giác ABC là tam giác cân, AI là đường trung tuyến )

=> ACN là hcn

25 tháng 12 2021

a: Xét tứ giác AMCD có

I là trung điểm của AC
I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

26 tháng 12 2022

đang cần mong mn giúp 

26 tháng 12 2022

Hình tự vẽ ạ 

a)

Ta có:

Tam giác ABC cân tại A (gt)

Đường trung tuyến AM (gt) 

=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )

MA là đường cao(cmt)=> AM vuông góc BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

=> I là trung điểm của 2 đường chéo AC và MK

=> Tứ giác AMCK là Hình bình hành

Hình bình hành AMCK có:

Góc AMC vuông (AM vuông góc BC )

=> Hình bình hành AMCK là hình chữ nhật 

b)

Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )

Δ ABC có:

M là trung điểm của BC ( AM là đường trung tuyến )

I là trung điểm của AC (gt)

⇒IM Là đường trung bình của ΔABC

⇒IM // AB (tính chất đường trung bình )

Tứ giác AKMB có:

MK // AB ( IM // AB )

AK // BM ( AK // MC )

⇒ Tứ giác AKMB là Hình Bình Hành

c) 

Theo đề ra ta có:

AM là đường trung tuyến

⇒ M là trung điểm của BC

⇒ \(BM=CM=\dfrac{1}{2}BC\)

Mà : BC = 8 cm 

⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)

Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:

\(AC^2=AM^2+CM^2\)

\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)

\(\Rightarrow AM=3cm\)

Diện tích tứ giác AMCK là :

\(S_{AMCK}=AM.CM\)

\(\Rightarrow S_{AMCK}=3.4=12cm^2\)

Vậy diện tích tứ giác AMCK là 12 cm vuông

c)

Giả sử tam giác ABC vuông cân 

=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )

AM là đường trung tuyến (gt)

=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC

Tam giác ABC có:

AM Là đường trung tuyến ứng với cạnh huyền BC 

=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)

Mà :

M là trung điểm của BC => BM = CM =1/2BC (2)

từ 1 và 2 => AM = CM = 1/2 BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

AM = CM (cmt)

=> Tứ giác AMCK là Hình Vuông

Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân 

 

 

17 tháng 11 2016

bài ở đâu vậy bà

của cj nó

Thấy tao thông minh chưa hả ? Học tập theo tao nè

a) Xét ΔABC có

K là trung điểm của AB(gt)

I là trung điểm của AC(gt)

Do đó: KI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KI//BC và \(KI=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét tứ giác BKIC có KI//BC(cmt)

nên BKIC là hình thang có hai đáy là KI và BC(Định nghĩa hình thang)

Hình thang BKIC(KI//BC) có \(\widehat{KBC}=\widehat{ICB}\)(hai góc ở đáy của ΔABC cân tại A)

nên BKIC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét ΔABC cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

hay \(\widehat{AMC}=90^0\)

Xét tứ giác AMCN có 

I là trung điểm của đường chéo AC(gt)

I là trung điểm của đường chéo MN(M và N đối xứng nhau qua I)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(cmt)

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Ta có: AMCN là hình chữ nhật(cmt)

nên AN//MC và AN=MC(Hai cạnh đối trong hình chữ nhật AMCN)

mà B\(\in\)MC và MB=MC(M là trung điểm của BC)

nên AN//BM và AN=BM

Xét tứ giác ANMB có

AN//BM(cmt)

AN=BM(cmt)

Do đó: ANMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)

Xét ΔABC có 

K là trung điểm của AB(gt)

M là trung điểm của BC(Gt)

Do đó: KM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KM//AC và \(KM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà I\(\in\)AC và \(AI=\dfrac{AC}{2}\)(I là trung điểm của AC)

nên KM//AI và KM=AI

Xét tứ giác AIMK có

KM//AI(cmt)

KM=AI(cmt)

Do đó: AIMK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và KI cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(2)

Từ (1) và (2) suy ra AM,BN và IK đồng quy(đpcm)