Câu 1: Cho 2 hàm số y = 3x ( d) và y = ( 𝑚2 − 1)𝑥 + 𝑚 − 2 ( d’) với m là
số thực cho trước. Tìm giá trị của m để (d’ ) song song với ( d )
A. m = - 2.
B. m = 2.
C. m = 4.
D. m ≠ 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m-2\right)+m+1=-1\)
=>2m-1=-1
=>m=0
Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)
2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)
=>m=-1
3:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-6m=-4
=>m=2/3(nhận)
a:
Sửa đề; (d):y=(m-2)x+m(m<>2)
Khi m=4 thì (d): \(y=\left(4-2\right)x+4=2x+4\)
b: Thay x=0 và y=0 vào (d), ta được:
\(0\cdot\left(m-2\right)+m=0\)
=>m=0
c: Để(d)//(d') thì \(\left\{{}\begin{matrix}m-2=1\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)
=>m=3
1: Khi m=3/2 thì \(\left(d\right):y=\left(2\cdot\dfrac{3}{2}-1\right)x+3=2x+3\)
2: \(tanx=a=2m-1\)
3:
Để hai đồ thị (d) và (d') song song với nhau thì:
\(2m-1=3\)
=>2m=4
=>m=2
4: Thay x=1 vào (d1), ta được:
\(y=2\cdot1-3=-1\)
Thay x=1 và y=-1 vào (d), ta được:
\(1\left(2m-1\right)+3=-1\)
=>2m+2=-1
=>2m=-3
=>\(m=-\dfrac{3}{2}\)
5: y=1
=>2x-3=1
=>2x=4
=>x=2
Thay x=2 và y=1 vào (d),ta được:
\(2\left(2m-1\right)+3=1\)
=>2(2m-1)=-2
=>2m-1=-1
=>2m=0
=>m=0