Chứng minh bất đẳng thức sau luôn đúng
Vơis mọi a,b,c>=0
\(ơ(a+b+c)/3] >= abc \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\forall a\)
\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)
a, \(\left(a+1\right)^2\ge4a\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)
b, Áp dụng bđt Cô-si
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(=8\sqrt{abc}=8\)(ĐPCM)
Dấu "=" khi a = b = c =1
a, \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1>4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)
b, Áp dụng bất đẳng thức trên ta có :
( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)
Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.
Khi đó : a + 1 > \(2\sqrt{a}\)
Tương tự ta có :
b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)
=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)
a) Có: \(\left(a-1\right)^2\ge0,\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
=>đpcm
b) Áp dụng bđt trên ta có:
\(\left(a+1\right)^2\ge4a\) (1)
\(\left(b+1\right)^2\ge4b\) (2)
\(\left(c+1\right)^2\ge4c\) (3)
Nhân vế vs vế (1) ; (2);(3) ta đc:
\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)