Mọi người giải bài này giúp mình với:
-Chứng minh rằng:x2- 2x + 3 ≥ 2 với mọi số thực x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 2xy + y2 + 1 = (x-y)2 + 1 \(\ge\)1
=> (x-y)2 +1 >0 => x2 - 2xy + y2 >0
b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2 - \(\frac{3}{4}\)< 0 => x - x2 - 1 <0
a) Ta có:
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
.\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)
\(\Rightarrow x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)
b) Ta có :
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Ta có :
\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x
\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )
Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4
Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)
\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.
Bạn thêm điều kiện n là số tự nhiên nhé ^^
\(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2\forall x\in R\)
cảm ơn cậu nhé