Thực hiện phép tính sau:x^2/x-1-1-2x/1-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{x^2+2x+1}\)\(-\)\(\frac{1}{x^2+2x+1}\)\(+\)\(\frac{2}{x +1}\)
= \(\frac{x^2-1+2\left(x+1\right)}{\left(x+1\right)^2}\)= \(\frac{x^2+2x+1}{x^2+2x+1}\)= 1
Ta có: \(\dfrac{2x+3}{1-x^2}+\dfrac{2x+1}{x^2-2x+1}\)
\(=\dfrac{-2x-3}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x+1}{\left(x-1\right)^2}\)
\(=\dfrac{\left(-2x-3\right)\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)}+\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\cdot\left(x-1\right)^2}\)
\(=\dfrac{-2x^2+2x-3x+3+2x^2+2x+x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{2x+4}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
thực ra mình cũng cố rồi nhưng mà IQ có hạn nên nghĩ mãi ko ra, thế nên mới phải cầu cứu mấy bạn giỏi hơn đấy =)
a, \(\left(2x-1\right)\left(3-2x\right)=6x-4x^2-3+2x=-4x^2+8x-3\)
b, \(\left(x+2\right)+\left(1+x\right)\left(1-x\right)=x+2+1-x^2=-x^2+x+3\)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(\dfrac{3}{2x^2+2x}+\dfrac{2x-1}{x^2-1}-\dfrac{2}{x}\)
\(=\dfrac{3}{2x\left(x+1\right)}+\dfrac{2x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{4}{2x}\)
\(=\dfrac{3\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}+\dfrac{2x\left(2x-1\right)}{2x\left(x-1\right)\left(x+1\right)}-\dfrac{4\left(x^2-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x-3+4x^2-2x-4x^2+4}{2x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+1}{2x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{2x\left(x-1\right)}\)
\(=\dfrac{1}{2x^2-2x}\)
Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo). Viết như thế này nhìn khó đọc quá.
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
\(=\dfrac{x^2}{x-1}-\dfrac{2x-1}{x-1}=\dfrac{x^2-2x+1}{x-1}=x-1\)