Bài 38:Cho tam giác ABC và M,N,P lần lượt là trung điểm của các cạnh BC,AC,AB.Chứng minh tam giác MNP và ABC đồng dạng.Tìm tỉ số đồng dạng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)
\(BC^2=20^2=400\)(cm)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
Xét Δ DNC và Δ ABC có:
\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)
Chung \(\widehat{C}\)
⇒Δ DNC \(\sim\) Δ ABC (g.g)
b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)
Δ DNC \(\sim\) Δ ABC (cma)
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)
c, Xét Δ DBM và Δ ABC có:
Chung \(\widehat{B}\)
\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)
⇒Δ DBM \(\sim\) Δ ABC(g.g)
\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)
Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M
\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)
a: Xét ΔABC có P,N lần lượt là trung điểm của AB,AC
nên PN là đường trung bình
=>PN//BC và PN=BC/2=BM
b: Xét ΔAPN và ΔPBM có
AP=PB
góc APN=góc PBM
PN=BM
=>ΔAPN=ΔPBM
Xét ΔPBM và ΔNMC có
PB=NM
góc PBM=góc NMC
BM=M
=>ΔPBM=ΔNMC
Xét ΔMPN và ΔPBM có
MP=PB
PM chung
PN=BM
=>ΔMPN=ΔPBM
a) Xét ΔBAC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{DC}=\dfrac{4}{7}\)
Tam giác ABC có:
+) N là trung điểm của AC
+) M là trung điểm của BC
=> MN là ĐTB của tam giác ABC
Tương tự c/m:
+) PN là ĐTB của tam giác ABC+) PM là ĐTB của tam giác ABC
*Có: MN là ĐTB của tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AB\)
\(\Rightarrow\dfrac{MN}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
Có: PN là ĐTB của tam giác ABC
\(\Rightarrow PN=\dfrac{1}{2}BC\)
\(\Rightarrow\dfrac{PN}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)
Có: PM là ĐTB của tam giác ABC
\(\Rightarrow PM=\dfrac{1}{2}AC\Rightarrow\dfrac{PM}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)
Xét tam giác MNP và tam giác ABC có:
\(\dfrac{MN}{AB}=\dfrac{NP}{BC}=\dfrac{MP}{AC}\left(=\dfrac{1}{2}\right)\)