Cho 0\(\le\)a,b,c\(\le\)1.CMR: a+b+c-ab-bc-ca\(\le\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ba số dương \(0\le a\le b\le c\le1\) CMR \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Vì \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)
Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)
Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)
Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)
Lời giải:
Vế đầu:
Áp dụng BĐT AM-GM:
$(ab+bc+ac)(a+b+c)\geq 9abc$
$\Leftrightarrow ab+bc+ac\geq 9abc$
$\Rightarrow ab+bc+ac-2abc\geq 9abc-2abc=7abc\geq 0$ do $a,b,c\geq 0$
Vế sau:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(1-2b)(1-2c)$
$\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1$
$\Rightarrow 2abc\geq \frac{8}{9}(ab+bc+ac)-\frac{2}{9}$
$\Rightarrow ab+bc+ac-2abc\leq ab+bc+ac-[\frac{8}{9}(ab+bc+ac)-\frac{2}{9}]=\frac{ab+bc+ac}{9}+\frac{2}{9}$
$\leq \frac{(a+b+c)^2}{27}+\frac{2}{9}$ (theo BĐT AM-GM)
$=\frac{1}{27}+\frac{2}{9}=\frac{7}{27}$
Ta có đpcm.
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html
Áp dụng AM-GM:
\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{0}{3}=0\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)