K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

24 tháng 7 2018

a, x = 79 => x + 1 = 80

Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)

\(=x+15=79+15=94\)

Còn lại tương tự

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

a) Với \(x=79\)

\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)

\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)

b) Hoàn toàn tương tự phần a.

\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)

\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

c)

\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$

d)

\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)

\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)

\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to

3 tháng 7 2019

Mik quên mất ghi đề bài r ! Xin lỗi nhé ! Đề bài là:

Bài 2: Phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử).

3 tháng 7 2019

Đây là toàn bộ nội dung câu hỏi các bạn nhé!

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương phápPhân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

7 tháng 4 2017

b) Thay x+1=10 ta được:

Q(x) = \(x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\) \(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1=1\)

7 tháng 4 2017

d) Thay x+1=13, ta được:

S(x) = \(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+10=-12+10=-2\)

13 tháng 3 2022

\(15x-3-x^2+2x+x^2-13x=7\)

\(\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)

13 tháng 3 2022

Ta có:

     3(5x - 1) - x(x - 2) + x2 - 13x = 7

→15x - 3 - x2 + 2x + x2 - 13x = 7

→4x - 3 = 7

→4x = 10

→x = \(\dfrac{5}{2}\)

25 tháng 11 2021

\(\left(x-5\right)\left(x+5\right)-\left(x+2\right)+4x\)

\(=\left(x^2-5^2\right)-\left(x+2\right)+4x\)

\(=x^2-25-x-2+4x\)

\(=x^2+3x-27\)

(3x-2).(9x+6x+4)

=27x^2+18x^2+12x-(18x+12x+8)

=27x^2+18x^2+12x-18x-12x-8

=(27x^2-18x^2)+18x-8

=9x^2+18x-8

mk ko chắc là đúng ko nha nên néu sai thì sorry nha UwU

1 tháng 11 2020

Ta có : 3x3 + x2 - 13x + 5

= 3x3 + 6x2 - 5x2 - 3x - 10x + 5

= ( 3x3 + 6x2 - 3x ) - ( 5x2 + 10x - 5 )

= 3x( x2 + 2x - 1 ) - 5( x2 + 2x - 1 )

= ( x2 + 2x - 1 )( 3x - 5 )

=> ( 3x3 + x2 - 13x + 5 ) : ( x2 + 2x - 1 ) = 10x - 1

⇔ ( x2 + 2x - 1 )( 3x - 5 ) : ( x2 + 2x - 1 ) = 10x - 1

⇔ 3x - 5 = 10x - 1

⇔ 3x - 10x = -1 + 5

⇔ -7x = 4

⇔ x = -4/7

1 tháng 11 2020

Cảm ơn nhé