K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(\Leftrightarrow Mx^2=x^2-2x+\sqrt{2015}\\ \Leftrightarrow x^2\left(M-1\right)+2x-\sqrt{2015}=0\)

Ta có \(\Delta'\ge0\Leftrightarrow1+\sqrt{2015}\left(M-1\right)\ge0\)

\(\Leftrightarrow1+\sqrt{2015}M-\sqrt{2015}\ge0\\ \Leftrightarrow M\ge\dfrac{\sqrt{2015}-1}{\sqrt{2015}}\)

Vậy \(M_{min}=\dfrac{\sqrt{2015}-1}{\sqrt{2015}}\Leftrightarrow x=-\dfrac{b'}{a}=-\dfrac{1}{M-1}=\dfrac{-\sqrt{2015}}{\sqrt{2015}-1}\)

14 tháng 3 2021

\(P-\dfrac{2}{3}=\dfrac{x^2-6x+9}{3x^2}=\dfrac{\left(x-3\right)^2}{3x^2}\ge0\Rightarrow P\ge\dfrac{2}{3}\).

Dấu "=" xảy ra khi x  =  3.

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

NV
20 tháng 3 2022

ĐKXĐ: \(x\ge-2;x\ne-1\)

\(M=\dfrac{x^2-2x}{x^3+1}+\dfrac{1}{2}\left(\dfrac{1-\sqrt{x+2}+1+\sqrt{x+2}}{1-\left(x+2\right)}\right)\)

\(=\dfrac{x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}=\dfrac{x^2-2x-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=-\dfrac{1}{x^2-x+1}\)

\(M=-\dfrac{1}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge-\dfrac{1}{\dfrac{3}{4}}=-\dfrac{4}{3}\)

\(M_{min}=-\dfrac{4}{3}\) khi \(x=\dfrac{1}{2}\)

*Rút gọn

Ta có: \(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Ta có: \(C=x-\sqrt{x}+1\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\)

hay \(x=\dfrac{1}{4}\)

30 tháng 6 2021

\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)

Vậy  \(C_{min}=\dfrac{3}{4}\)

\(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\)

Áp dụng AM-GM có: \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\)

Dấu "=" xảy ra khi x=1 (ktm đk)

Suy ra dấu bằng ko xảy ra \(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2-1=1\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}< 2\) 

\(\Rightarrow N< 2\) mà \(N>0\),\(N\) nguyên

\(\Rightarrow N=1\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{5}}{2}\\\sqrt{x}=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\) (tm)

Vậy...

23 tháng 10 2021

a) ĐKXĐ: \(x>0\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

\(A=x-\sqrt{x}=2\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)(do \(\sqrt{x}+1\ge1>0\))

b) \(A=x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)>0\)(do \(x>1\))

\(\Leftrightarrow A=x-\sqrt{x}=\left|A\right|\)

c) \(A=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(minA=-\dfrac{1}{4}\Leftrightarrow\sqrt[]{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

23 tháng 10 2021

\(a,A=\dfrac{x\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\left(x>0\right)\\ A=\dfrac{x\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\\ A=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\\ A=2\Leftrightarrow x-\sqrt{x}-2=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}=2\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)

\(b,x>1\Leftrightarrow\sqrt{x}-1>0\\ \Leftrightarrow\left|A\right|=\left|x-\sqrt{x}\right|=\left|\sqrt{x}\left(\sqrt{x}-1\right)\right|=\sqrt{x}\left(\sqrt{x}-1\right)=A\left(\sqrt{x}>0\right)\)

\(c,A=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ A_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

=>|x-1|+|x-2|=2016

TH1: x<1

Pt sẽ là 1-x+2-x=2016

=>-2x+3=2016

=>-2x=2013

=>x=-2013/2(nhận)

TH2: 1<=x<2

Pt sẽ là x-1+2-x=2016

=>1=2016(loại)

TH3: x>=2

Pt sẽ là 2x-3=2016

=>2x=2019

=>x=2019/2(nhận)

29 tháng 12 2020

\(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P\left(x\right)=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)

\(P\left(x\right)=x-\sqrt{x}\)

Ta có : \(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{x-\sqrt{x}}{2020\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2020\sqrt{x}}=\dfrac{\sqrt{x}-1}{2020}\)

Để \(\dfrac{P\left(x\right)}{2020\sqrt{x}}min\Leftrightarrow\dfrac{\sqrt{x}-1}{2020}min\Leftrightarrow\sqrt{x}-1\) min (vì 2020 > 0)

Lại có : \(\sqrt{x}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Min\(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{-1}{2020}\Leftrightarrow x=0\)

23 tháng 8 2023

a) \(P=\dfrac{x^2-\sqrt[]{x}}{x+\sqrt[]{x}+1}-\dfrac{2x+\sqrt[]{x}}{\sqrt[]{x}}+\dfrac{2\left(x+\sqrt[]{x}-2\right)}{\sqrt[]{x}-1}\)

Điều kiện xác định \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left[\left(\sqrt[]{x}\right)^3-1\right]}{x+\sqrt[]{x}+1}-\dfrac{\sqrt[]{x}\left(2\sqrt[]{x}+1\right)}{\sqrt[]{x}}+\dfrac{2\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-1\right)\left(x+\sqrt[]{x}+1\right)}{x+\sqrt[]{x}+1}-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=\sqrt[]{x}\left(\sqrt[]{x}-1\right)-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=x-\sqrt[]{x}-2\sqrt[]{x}-1+2\sqrt[]{x}+4\)

\(\Rightarrow P=x-\sqrt[]{x}+3\)

23 tháng 8 2023

b) \(A=\dfrac{P}{2012\sqrt[]{x}}=\dfrac{x-\sqrt[]{x}+3}{2012\sqrt[]{x}}\)\(\)

\(=\dfrac{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+3}{2012\sqrt[]{x}}\)

\(=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}{2012\sqrt[]{x}}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{\dfrac{11}{4}}{2012\sqrt[]{x}}=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\)

Ta lại có  \(\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}\ge0,\forall x\ne0\)

\(\dfrac{1}{\sqrt[]{x}}>0\Rightarrow\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{4.2012}=\dfrac{11}{8048}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{8048}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt[]{x}=1\Leftrightarrow x=1\)

Vậy \(GTNN\left(A\right)=\dfrac{11}{8048}\left(tạix=1\right)\)

26 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

=>\(M=\dfrac{x}{\sqrt{x}+2}\)

=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)

=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)

=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)

Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)

=>\(\sqrt{x}=0\)

=>x=0(nhận)