K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(A=3\left(1+3+3^2+3^3+...+3^9\right)⋮3\)

26 tháng 12 2021

A=3(1+3+32+33+...+39)⋮3

18 tháng 12 2016

\(A=3+3^2+3^3+3^4+...+3^9+3^{10}\)(có 10 số)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)(có 5 nhóm)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(A=\left(1+3\right)\left(3+3^3+...+3^9\right)\)

\(A=4\left(3+3^3+...+3^9\right)⋮4\left(đpcm\right)\)

18 tháng 12 2016

A = 3+32+33+...+39+310

A = (3+ 32)+(33+34)+...+(39+310)

A = 3(1+3)+33(1+3)+...+39 (1+3)

A = (1+3)(3+33+...+39)

A = 4(3+33+...+39) => chia hết cho 4

18 tháng 12 2016

\(A=3+3^2+...+3^{10}\)

\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)

\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(=3\cdot4+...+3^9\cdot4\)

\(=4\cdot\left(3+...+3^9\right)⋮4\)

23 tháng 3

Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.

\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)

\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)

\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{10}{10!}-\frac{1}{10!}\)

\(A=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{9!}-\frac{1}{10!}\)

\(A=1-\frac{1}{10!}\)

\(\Rightarrow A< 1\left(đpcm\right)\)

a) A = 1 + 3 + 32 + ... + 3

3A = 3 ( 1 + 3 + 32 + .. + 37)

3A = 3 + 32 + 33 + ...+ 38

b) Vì 3A = 3 + 32 + 33 + ...+38

2A = 38- 1

A = ( 38-1) : 2 (Điều phải chứng minh)

9 tháng 7 2023

a) A = 1 + 3 + 32 + ... + 3

3A = 3 ( 1 + 3 + 32 + .. + 37)

3A = 3 + 32 + 33 + ...+ 38

b) Vì 3A = 3 + 32 + 33 + ...+38

2A = 38- 1

A = ( 38-1) : 2 (Điều phải chứng minh)

Mong bạn tick cho mình

 

6 tháng 10 2016

\(A=1+3+3^2+3^3+...+3^{1999}+3^{2000}\)

\(A=3^0+3^1+3^2+3^3+...+3^{1999}+3^{2000}\)

Xét dãy số : 0 ; 1 ; 2 ; 3 ; ... ; 1999 ; 2000

Số số hạng của dãy số trên là :

    ( 2000 - 0 ) : 1 + 1 = 2001 ( số )

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\) ( 667 cặp số )

\(A=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{1998}.\left(1+3+3^2\right)\)

\(A=1.13+3^3.13+...+3^{1998}.13\)

\(A=\left(1+3^3+...+3^{1998}\right).13\)

=> A chia hết cho 13