Tìm x, y biết : \(\frac{8x-2y+1}{24y}=\frac{8x-2}{3}=\frac{3x-2y}{5}\) với \(y\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )
b, Ta có : \(6x^2y=6x^2y\)
=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)
=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )
c, Ta có : \(6x-6y=6x-6y\)
=> \(6x-6y=-6y+6x\)
=> \(6\left(x-y\right)=-6\left(y-x\right)\)
=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)
=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)
\(\Rightarrow4,5x=9\Rightarrow x=2\)
Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)
\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)
Rút gọn A trước khi tính :
\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)
\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)
Thay \(x=-2,y=\frac{3}{4}\) vào A có :
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)
\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)
:)) Số xấu ....
Xét biểu thức A, ta suy ra:
\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)
Tại x=-2 và y=3/4 thì:
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)
(phần này bạn tự tính)
\(\)
=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y
=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y
=11/2x^2+0-15x^3y^2+5/3y
=11/2x^2-15x^3y^2+5/3y
thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc
11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6
vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6
a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)
=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)
=\(\frac{3x^3-4y}{24x^4y^5}\)
b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)
=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y-5x}{x\left(y+5x\right)}\)
c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2}{x\left(x-1\right)}\)