cho tam giác ABC cân tại A đường cao AH=10, đường cao BK=12. tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK
=> CA/15,6 = 2CH/12 => CA = 2,6.CH (1)
mặt khác áp dụng pitago cho tgiac vuông HAC:
CA² = CH² + AH² (2)
thay (1) vào (2): 2,6².CH² = CH² + 15,6²
=> (2,6² - 1)CH² = 15,6² => CH = 15,6 /2,4 = 6,5
Bạn tự vẽ hình nhé:
ta có : AH.BC=AC.BK
\(\Rightarrow\)\(\frac{AC}{BC}=\frac{AH}{BK}=\frac{15,6}{12}=1,3\)
suy ra AC=BC.1,3
ta lại có \(AH^2+HC^2=AC^2\)
Đặt BC=x suy ra AC=1,3x
suy ra \(\frac{1}{4}x^2+15,6^2=1,69x^2\)
Giải phương trình này ra bạn sẽ tìm được BC
Đáp số : BC=13(đơn vị đo)
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm)
Áp dụng tính chất đường phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
Mà: $BD+DC=BC=20$ nên:
$BD=20:(3+4).3=\frac{60}{7}$ (cm)
$CD= 20:(3+4).4=\frac{80}{7}$ (cm)
b.
$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm)
$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)
Vì tam giác ABC vuông cân tại A nên ta có đường cao BA (đáy AC) = 5, đường cao AC (đáy AB) = 5
Kẻ đường cao AH sao cho AH cắt BC tại H.
Do tam giác ABC cân tại A nên AH vừa là đường cao, vừa là phân giác => Góc HAB = Góc HAC
Xét tam giác BAH và tam giác CAH có:
Góc B = Góc C (tam giác ABC cân)
BA = CA
góc HAB = góc HAC
=> tam giác BAH = tam giác CAH (g.c.g)
=> BH = CH = 1/2 BC = 4
Áp dụng định lí Py-ta-go cho tam giác BAH, ta có:
AH2 + BH2 = AB2
AH2 + 16 = 20
Suy ra, AH = 2
Cho các điểm như hình vẽ. Do ABC cân nên BH = HC = 4. Vậy \(\text{AH = }\sqrt{AB ^2-BH^2}=\sqrt{5^2-4^2}=3\)
Ta thấy \(\frac{KC}{BC}=sinABC=\frac{AH}{AB}=\frac{3}{5}\Rightarrow CK=\frac{8.3}{5}=4,8\)
Do tam giác ABC cân tại A nên BI = CK = 4,8.
tam giác AHC đồng dạng tam giác BKC ta được :AH/AC = BK / BC =>AC = 5/3 HC ( vì BC =2 HC ) ( 1 )
lại có AC 2 = AH2 + HC2 => AC2 = 100 +HC2 ( 2 )
từ 1 và 2 có hệ
giải được HC =7,5 => BC =15
Bc=15 nha bạn