K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

x^8>=0; x^8-x^5>=0;

x^2>=0; x^2-x>=0;

x^8-x^5+X^2-X+1>=1;

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

7 tháng 10 2021

Cảm ơn ạyeu

 

4 tháng 9 2021

a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)

c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)

a: =x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

b: B=x^2-6x+8+3

=x^2-6x+11

=x^2-6x+9+2

=(x-3)^2+2>=2>0 với mọi x

c: =x^2-4xy+4y^2+x^2+2x+1+4

=(x-2y)^2+(x+1)^2+4>=4>0 với mọi x,y

22 tháng 10 2021

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Ta có:

\(\begin{array}{l}P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\\P = 5{\rm{x}}.2 - 5{\rm{x}}.x - x.x - x.9 - 1.x - 1.9\\P = 10{\rm{x}} - 5{{\rm{x}}^2} - {x^2} - 9{\rm{x}} - x - 9\\P =  - \left( {6{{\rm{x}}^2} + 9} \right)\end{array}\)

Vì \(6{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \(6{{\rm{x}}^2} + 9 \ge 9,\forall x \in \mathbb{R}\) suy ra \( - \left( {6{{\rm{x}}^2} + 9} \right) \le  - 9 < 0,\forall x \in \mathbb{R}\)

Vậy P luôn nhận giá trị âm với mọi giá trị của biến x.

b) Ta có:

\(\begin{array}{l}Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + x.x - x.4y - 2{\rm{x}}.6 - 2{\rm{x}}.\left( { - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + {x^2} - 4{\rm{xy}} - 12{\rm{x}} + 4{\rm{xy + 12x + 1}}\\{\rm{Q = 4}}{{\rm{x}}^2} + 1\end{array}\)

Vì \({\rm{4}}{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \({\rm{4}}{{\rm{x}}^2} + 1 \ge 1 > 0,\forall x \in \mathbb{R}\)

Vậy Q luôn nhận giá trị dương với mọi giá trị của x, y.

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời