A= 3 + 3^2 + 3^3 +3^4 +....+ 3^2012
tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)
=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)
=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)
=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)
b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên
15: A= 1/3-3/4+3/5+1/2007-1/36+1/15-2/9
Sửa đề:
A=-3/4-2/9-1/36+1/3+3/5+1/15+1/2007
=-27/36-8/36-1/36+5/15+9/15+1/15+1/2007
=-1+1+1/2007=1/2007
16:
\(A=\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
=1/64
17:
=1/2-1/2+2/3-2/3+3/4-3/4+4/5-4/5+5/6-5/6-6/7
=-6/7
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\)
\(\Rightarrow6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow4A=3-\frac{2012}{3^{2011}}\)
\(\Rightarrow A=\frac{3-\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{2012}{3^{2011}.4}\)
\(\Rightarrow A< \frac{3}{4}\)
Ta có: A=3+3^2+3^3+....+3^2012
nên 3.A=3^2+3^3+3^4+....+3^2013
nên 3A-A=3^2013-3
nên 2A=3^2013-3
nên A=(3^2013-3)/2