Tam giác ABC vuông tại A, đường phân giác AD, AB =10 cm, AC = 15 cm. Tính diện tích hình vuông có đường chéo là AD.
Ai giúp mik với mik đg cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có độ dài AB là : \(\left(17+7\right):2=12cm\)
độ dài AC là : \(12-7=5cm\)
độ dài cạnh BC là : \(BC=\sqrt{12^2+5^2}=13cm\)
Chu vi tam giác ABC là : \(AB+BC+AC=12+5+13=30cm\)
DIện tích tam giác ABC là : \(AB\times\frac{AC}{2}=12\times\frac{5}{2}=30cm^2\)
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
xét tam giác BAD và tam giác CAD có : AD chung
góc ABD = góc ACD = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác BAD = tam giác CAD (ch-cgv)
=> góc BAD = góc CAD mà AD nằm giữa AB và AC
=> AD là phân giác của góc ABC (đn)
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
ta có ΔABC vuông tại A
=>AB^2+AC^2=BC^2( định lí pytago)
=>BC^2=21^2+28^2
=1225
=>BC=35(cm)
+ có AD là đường phân giác
=>DC/DB=AC/AB
<=>DC+DB/DB=AC+AB/AB
<=>BC/DB=AC+AB/AB
<=>35/DB=21+28/21
=>35/DB=49/21
=>DB=35.21/49=15 cm
=>DC=BC-DB=35-15=20 cm
+ΔACH∞ΔBCA(g,g) vì
góc H=góc A=90 độ
góc C chung
=>AC/BC=CH/CA( hai cạnh tương ứng)
=>AC^2=CH.BC
=>CH=AC^2/BC=28^2/35=22,4 cm
ta có CH>CD(22,4>20)
=>D nằm giữa C và H
=>HD=CH-CD=22,4-20=2,4 cm
=>BH=BC-CH=35-22,4=12,6 cm
vậy BH=12,6cm
HD=2,4 cm
DC=20 cm
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
\(BM=\sqrt{AB^2-AM^2}=6\left(cm\right)\)
vì ABC cân tại A => AB=AC,B=C
mà AB=10cm=>AC=10cm
AB^2=AM^2+BM^2
10^2=8^2+BM^2
100=64+BM^2
BM^2=100-64
BM^2=36
=>BM=6 cm