cho a,b,c>0 và 2P=a+b+c . chứng minh:
\(\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng BĐT: \(xyz\le\left(\frac{x+y+z}{3}\right)^3\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\left(\frac{a+b+c}{3}\right)^3\left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{1}{3}\right)^3\left(\frac{2}{3}\right)^3=\frac{8}{729}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Đặt: \(\hept{\begin{cases}\frac{1-a}{1+a}=x\\\frac{1-b}{1+b}=y\\\frac{1-c}{1+c}=z\end{cases}}\)
\(\Rightarrow-1< x,y,z< 1\)và \(\hept{\begin{cases}\frac{1-x}{1+x}=a\\\frac{1-y}{1+y}=b\\\frac{1-z}{1+z}=c\end{cases}}\)
Theo đề bài ta có: \(abc=1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(\Rightarrow x+y+z+xyz=0\)
Mặt khác ta có: \(\frac{4a}{\left(a+1\right)^2}=1-x^2;\frac{2}{a+1}=1+x\)
Và: \(\frac{4b}{\left(b+1\right)^2}=1-y^2;\frac{2}{b+1}=1+y\)
Và: \(\frac{4c}{\left(c+1\right)^2}=1-z^2;\frac{2}{c+1}=1+z\)
Nên: \(\frac{4a}{\left(a+1\right)^2}+\frac{4b}{\left(b+1\right)^2}+\frac{4c}{\left(c+1\right)^2}\le1+2.\frac{2}{a+1}.\frac{2}{b+1}.\frac{2}{c+1}\)
\(\Leftrightarrow x^2+y^2+z^2+\left(xy+yz+zx\right)+2\left(x+y+z+xyz\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)
Đây là BĐT luôn đúng nên ta có đpcm.
ミ★ᗪเệų ℌųуềй (ßăйǥ ßăйǥ ²к⁶)★彡 Giải ghê quá, t chẳng hiểu gì.
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
BĐT \(\Leftrightarrow \sum\limits_{cyc} \frac{xy}{(x+y)^2} \leq \frac{1}{4}+\frac{4xyz}{(x+y)(y+z)(z+x)}\)
Ta có: \(VP-VT=\frac{4\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}{4\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\ge0\)
BĐT hiển nhiên đúng.
Vì a,b,c là độ dài 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)
\(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)
\(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)
\(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)
Dấu "=" <=> tam giác đó đều
\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)
\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)
\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\((p-a)(p-b) \leq \frac{(p-a+p-b)^2}{4}=\frac{c^2}{4}\) tương tự rồi nhân lại, ta có đpcm.
Ta có bất đẳng thức phụ sau:
\(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\) \(\left(\text{*}\right)\) với \(a,b,c\) là độ dài ba cạnh của một tam giác \(\left(a,b,c>0\right)\)
Thật vậy, áp dụng bất đẳng thức AM-GM cho các cặp số dương:
\(\left(a+b-c\right)+\left(c+a-b\right)\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)
\(\Rightarrow\) \(2a\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)
\(\Rightarrow\) \(a^2\ge\left(a+b-c\right)\left(c+a-b\right)\) \(\left(1\right)\)
Tương tự áp dụng bất đẳng trên, ta cũng được:
\(b^2\ge\left(a+b-c\right)\left(b+c-a\right)\) \(\left(2\right)\) và \(c^2\ge\left(c+a-b\right)\left(b+c-a\right)\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) \(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\right]^2\)
\(\Rightarrow\) \(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(a=b=c\) \(\Leftrightarrow\) tam giác đó là tam giác đều