cho tam giác abc ,M là trung điểm của BC.Trên tai đối tia đối MA lấy điểm E sao cho ME=MA
a,ChỨNG minh AC+BE
b.Chứng minh AB//CE
C. lẤY ĐIỂM I trên AC và điểm K trên Be sao cho AI=EK
Chứng minh 3 điểm I,M,K thằng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔABM=ΔECM
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó:ABEC là hình bình hành
Suy ra: AB//CE
c: Xét tứ giác AIEK có
AI//EK
AI=EK
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay MI=MK
a) △ABM và △ECM có:
\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)
\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)
b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)
c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)
a) Xét ΔABM và ΔECM có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔABM=ΔECM(c-g-c)
ddddddddddddddddddddddddddddddddddddddddddddddddddcccccccccccccccccccccccccccccccccccccc
Xét ABM và EMC có :
AM = ME
BM = CM
Góc AMB = góc CME ( đối đỉnh )
=> tam giac ABM = Tam giác EMC
Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC
Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong
=> AB // CE
c Xét tam giác AIB và tam gics CIK có :
AI = IC
BI = Ik
Góc AIB = góc CIK ( đối đỉnh )
=> tam giác AIB = tam giác CIK
a: Xét ΔABM và ΔECM có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔABM=ΔECM
b: ΔABM=ΔECM
=>AB=EC và góc ABM=góc ECM
=>AB//EC
c: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
nên ABEC là hình bình hành
=>AC//BE
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
DO đó: ABEC là hình bình hành
Suy ra: AB//EC
(hình hơi xi đa mong bạn thông cảm)
a,Xét tam giác AMC và tam giác BME có
CM=BM(gt)
Góc CMA=EMB(đđ)
AM=EM(gt)
=>tam giác AMC=tam giác BME
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
c: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
d: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>I,M,K thẳng hàng
phần a là chứng minh AC=BE CHỨ K PHẢI AC+BE ĐÂU các bạn .Giups mk trả lời vc
a) xét tam giác AMC và tam giác EMB có:
MA=ME(gt)
MB=MC(gt)
BME=AMC(2 góc đ2)
suy ra tam giác AMC=EMB(c.g.c)
suy ra AC=BE