Ctr: 405n+2405m2 (m,n thuộc N;n khác 0) không chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ctr: giá trị của biểu thức : 12*2^n - 2^n+1, ( n thuộc n) là 1 số tự nhiên có chữ số tận cùng bằng 0
CTR: giá trị của biểu thức : 12*2^n - 2^n+1, ( n thuộc N) là 1 số tự nhiên có chữ số tận cùng bằng 0
Ta có a, b, c, d thuộc N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}
\)
\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)
Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1
\)\(\Rightarrow\) \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)
Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d}
\Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow\) M<2 (2)
Từ (1) và (2) \(\Rightarrow\) 1<M<2
\(\Rightarrow\) M không có giá trị là số nguyên