Tìm phân số a/b biết giá trị của a/b bằng 32/48 và ƯCLN(a,b).BCNN(a,b)=486, a,b thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn 32 phần 48 thành 2 phần 3
Vì 2 phần 3 = a phần b
=>a=2k;b=3k (k thuộc N*) (1)
Vì BCNN (a;b) nhân với ƯCLN (a;b)=486
=>a nhân b=486
Từ (1) =>2k nhân 3k = 486
6kk=486
kk=486 : 6=81=9 nhân 9
=>k=9
=>a=2 nhân 9= 18
b=3 nhân 9=27
vậy a=18;b=27
£ȅ๖ۣۜ Nջѻ¢๖ۣۜBảø๖ۣۜ Cυтė(๖ۣۜTeam๖ۣۜSoái๖ۣℭa)
em chịu khó gõ link này lên google nhé !
https://olm.vn/hoi-dap/detail/212288541415.html
Ta thấy a/b=25/35=5/7, gọi ƯCLN(a,b)=m của ta có: a=5.m, b=7.m vì: \(\frac{a}{b}\)\(=\)\(\frac{5.m}{7.m}\)\(=\)\(\frac{5}{7}\)với m#0, lúc đó BCNN(a,b)=5.7.m
Vậy tích ƯCLN và BCNN của a và b là: m.5.7.m=4235, suy ra m=11, vậy a là 5.m=11.5=55, b=7.m=7.11=77
a) \(24=2^3.3\)
\(60=2^2.3.5\)
\(UCLN\left(a;b\right)=UCLN\left(24;60\right)=2^2.3=6\)
\(BCNN\left(a;b\right)=BCNN\left(24;60\right)=2^3.3.5=120\)
\(a.b=UCLN\left(a;b\right).BCNN\left(a;b\right)\)
\(\Rightarrow a.b=6.120=720\)
mà \(\dfrac{a}{b}=\dfrac{24}{60}\Rightarrow\dfrac{a}{24}=\dfrac{b}{60}=\dfrac{720}{24.60}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=24.\dfrac{1}{2}=12\\b=60.\dfrac{1}{2}=30\end{matrix}\right.\)
Vậy Phân số cần tìm là \(\dfrac{12}{30}\)
b) \(\left\{{}\begin{matrix}14=2.7\\21=3.7\end{matrix}\right.\)
\(\Rightarrow UCLN\left(a;b\right)=UCLN\left(14;21\right)=7\)
\(a.b=UCLN\left(14;21\right).BCNN\left(14;21\right)\)
\(\Rightarrow a.b=7.3456=24192\)
\(\dfrac{a}{b}=\dfrac{14}{21}\Rightarrow\dfrac{a}{14}=\dfrac{b}{21}=\dfrac{a.b}{14.21}=\dfrac{24192}{294}=\dfrac{576}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{576}{7}.14=1152\\b=\dfrac{576}{7}.21=1728\end{matrix}\right.\)
Vậy phân số cần tìm là \(\dfrac{1152}{1728}\)
a)\(\frac{a}{b}=\frac{36}{45}=\frac{4}{5}\)
\(=>\frac{a}{b}=\frac{4k}{5k}\)
\(=>ƯCLN\left(a,b\right)=ƯCLN\left(4k,5k\right)=4.5.k=20k=300\)
\(=>k=\frac{300}{20}=15\)
\(=>a=4.15=60;b=5.15=75\)
\(=>\) \(\frac{a}{b}=\frac{60}{75}\)
b)\(\frac{a}{b}=\frac{21}{35}=\frac{3}{5}\)
\(=>\frac{a}{b}=\frac{3.30}{5.30}=\frac{90}{150}\)
c)\(\frac{a}{b}=\frac{15}{35}=\frac{3}{7}\)
\(=>\frac{a}{3}=\frac{b}{7}\)hay\(\frac{a}{3}.\frac{b}{7}=\left(\frac{a}{3}\right)^2=\frac{ab}{21}=\frac{3549}{21}=169\)
\(\frac{a}{3}=13;-13=>a=39;-39,b=91;-91\)
\(=>\frac{a}{b}=\frac{39}{91}hay\frac{a}{b}=\frac{-39}{-91}\)