Thực hiện phép tính:\(\sqrt{4}:\dfrac{2}{3}-\dfrac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
Lời giải:
a.
\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)
$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.
$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$
$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.
$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$
$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$
$=1(3+\sqrt{2})=3+\sqrt{2}$
\(=\dfrac{2\sqrt{3}+2+2\sqrt{3}-2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\dfrac{4\sqrt{3}}{2}-\sqrt{3}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
a, Sửa đề:
\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)
\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(a,\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(b,\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(=\left(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\left(\dfrac{x^2+4x+3}{\left(x+2\right)\left(x+3\right)}+\dfrac{x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{2x^2+8x+7}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{\left(2x^2+8x+7\right).x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+8x^2+7x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+10x^2+15x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=2:\dfrac{3}{3}-\dfrac{1}{3}\)
\(=2\cdot\dfrac{2}{3}-\dfrac{1}{3}=1\)
\(=2\cdot\dfrac{3}{2}-\dfrac{1}{3}=3-\dfrac{1}{3}=\dfrac{8}{3}\)