Cho lx-1l + l1-xl =2. Tập hợp x thoả mãn biểu thức trên là S={....}
Giải và chỉ cho cách làm nha! thanks! ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: |1-5x|-1=3
=>|5x-1|=4
=>5x-1=4 hoặc 5x-1=-4
=>5x=5 hoặc 5x=-3
=>x=1 hoặc x=-3/5
2: 4|2x-1|+3=15
=>4|2x-1|=12
=>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
3,\(\left|x+4\right|=2x+1\)
TH1: x+4≥0⇔x≥-4,pt có dạng:
x+4=2x+1⇔-x=-3⇔x=3(t/m)
TH2:x+4<0⇔x<-4,pt có dạng:
-x-4=2x+1⇔-3x=5⇔x=\(\dfrac{-5}{3}\)(loại)
Vậy pt đã cho có tập nghiệm S=\(\left\{3\right\}\)
4,\(\left|3x+4\right|=x-3\)
TH1: 3x-4≥0⇔3x≥4⇔x≥\(\dfrac{4}{3}\),pt có dạng:
3x-4=x-3⇔2x=1⇔x=\(\dfrac{1}{2}\)(loại)
TH2: 3x-4<0⇔3x<4⇔x<\(\dfrac{4}{3}\),pt có dạng:
-3x+4=x-3⇔-4x=-7 ⇔x=1,75(loại)
Vậy pt đã cho vô nghiệm
giờ
là lấy cái vế trên á
thế đi thế lại
nghĩa là
xy=-2
thì x=-2/y
thế vào
xz=3
sẽ dc
-2z/y=3
nhân y cho cái phân số dc
-2zy/y^2=3
thay zy=-4 vô
sẽ dc
y^2=8/3
thay đi thay lại là dc á
Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.
\(I=-3+\left|\frac{1}{2}-x\right|\)
Vì \(\left|\frac{1}{2}-x\right|\ge0\)
\(\Rightarrow-3+\left|\frac{1}{2}-x\right|\ge-3\)
Dấu = xảy ra khi \(\frac{1}{2}-x=0\Rightarrow x=\frac{1}{2}\)
Vậy Min I = -3 khi x=1/2
Lời giải:
$\frac{x}{4}=\frac{18}{x+1}$
$\Rightarrow x(x+1)=18.4$
$x(x+1)=72$
$x(x+1)-72=0$
$x^2+x-72=0$
$(x^2-8x)+(9x-72)=0$
$x(x-8)+9(x-8)=0$
$(x-8)(x+9)=0$
$\Rightarrow x-8=0$ hoặc $x+9=0$
$\Rightarrow x=8$ hoặc $x=-9$
Tập hợp giá trị nguyên của $x$ thỏa mãn điều kiện đề bài là:
$\left\{8; -9\right\}$
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
S={0;2} nha
ta có:|x-1|=|1-x|
|1-x|+|1-x|=2
2|1-x|=2
|1-x|=1
TH1: 1-x=1 suy ra x=0
TH2: 1-x=-1 suy ra x=-2
mà toán 7 có dạng này rùi mừ