K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

Ta có: Ax⊥AB

By⊥AB

Do đó: Ax//By

a: Xét(O) có

CM,CA là tiếp tuyến

nên CM=CA và OC là phân giác của góc AOM(1)
Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

CD=CM+MD

=>CD=AC+BD

c: AC*BD=CM*MD=OM^2=R^2 ko đổi

d: CM=CA

OM=OA

=>OC là trung trực của AM

mà H nằm trên trung trực của AM

nên O,H,C thẳng hàng

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

28 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

25 tháng 11 2023

a: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc BOM

=>\(\widehat{BOM}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>OC\(\perp\)OD

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

\(\dfrac{AC^2+BD^2}{CD^2}\)

\(=\dfrac{AC^2+\left(3AC\right)^2}{\left(CM+MD\right)^2}\)

\(=\dfrac{10AC^2}{\left(CA+BD\right)^2}\)

\(=\dfrac{10AC^2}{\left(AC+3AC\right)^2}=\dfrac{10}{4^2}=\dfrac{10}{16}=\dfrac{5}{8}\)

 

25 tháng 11 2023

từ MC.MD= OM^2 sao có đc AC^2 + BD^2 / CD^2 vậy bạn

 

30 tháng 11 2021

b: Xét (O) có

EK là tiếp tuyến

EA là tiếp tuyến

Do đó: EK=EA

Xét (O) có

FK là tiếp tuyến

FB là tiếp tuyến

Do đó: FK=FB

Ta có: EK+KF=EF

hay EF=AE+BF