\(\dfrac{6^{25}}{4^{12}.9^{13}}\)
Mình cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
\(\dfrac{-1}{12},\dfrac{-3}{4},\dfrac{2}{9},\dfrac{7}{6}\)
a, \(\dfrac{1}{2}\) - ( - \(\dfrac{1}{3}\) ) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)
= \(\dfrac{5}{6}\) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)
= 1 + \(\dfrac{1}{23}\)
= \(\dfrac{24}{23}\)
b, \(\dfrac{11}{24}\) - \(\dfrac{5}{41}\) + \(\dfrac{13}{24}\) + 0,5 - \(\dfrac{36}{41}\)
= (\(\dfrac{11}{24}\) + \(\dfrac{13}{24}\)) - ( \(\dfrac{5}{41}\) + \(\dfrac{36}{41}\)) + 0,5
= 1 - 1 + 0,5
= 0,5
c,\(-\dfrac{1}{12}-\left(\dfrac{1}{6}-\dfrac{1}{4}\right)\)
=\(-\dfrac{1}{12}-\left(-\dfrac{1}{12}\right)\)
=0
d, \(\dfrac{1}{6}-\left[\dfrac{1}{6}-\left(\dfrac{1}{4}+\dfrac{9}{12}\right)\right]\)
= \(\dfrac{1}{6}-\left[\dfrac{1}{6}-1\right]\)
= \(\dfrac{1}{6}-\left(-\dfrac{5}{6}\right)\)
= 1
\(\dfrac{25}{30}=\dfrac{5}{6}\)
\(\dfrac{9}{15}=\dfrac{3}{5}\)
\(\dfrac{10}{12}=\dfrac{5}{6}\)
\(\dfrac{6}{10}=\dfrac{3}{5}\)
Bạn nhìn theo phần rút gọn tui gửi mà so sánh các phân số khác nhek
Lời giải:
$=\frac{-9}{10}+\frac{13}{10}+(\frac{6}{11}-\frac{9}{11})$
$=\frac{13-9}{10}+\frac{6-9}{11}=\frac{4}{10}-\frac{3}{11}$
$=\frac{7}{55}$
a) \(4^8\cdot4^4=\left(2^2\right)^8\cdot\left(2^2\right)^4=2^{16}\cdot2^8=2^{16+8}=2^{24}\)
b) \(5^{12}\cdot7-5^{11}\cdot10\)
\(=5^{11}\cdot\left(5\cdot7-10\right)=5^{11}\cdot\left(35-10\right)=5^{11}\cdot25\)
\(=5^{11}\cdot5^2=5^{11+2}=5^{13}\)
d) \(27^{16}:9^{10}\)
\(=\left(3^3\right)^{16}:\left(3^2\right)^{10}=3^{48}:3^{20}=3^{48-20}=3^{28}\)
e) \(125^3:25^4=\left(5^3\right)^3:\left(5^2\right)^4=5^9:5^8=5^{9-8}=5\)
f) \(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:4\right)^4-\left(32:16\right)^{12}\)
\(=6^4-2^{12}\)
\(=2^4\cdot\left(3^4-2^8\right)=2^4\cdot-175=-2800\)
\(=\dfrac{3^{25}\cdot2^{25}}{2^{24}\cdot3^{26}}=\dfrac{2}{3}\)
\(\dfrac{6^{25}}{4^{12}.9^{13}}=\dfrac{\left(2.3\right)^{25}}{\left(2^2\right)^{12}.\left(3^2\right)^{13}}=\dfrac{2^{25}.3^{25}}{2^{24}.3^{26}}=\dfrac{2}{3}\)