K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

=0 rồi cái đề như thế cugx hỏi 

11 tháng 3 2016

giá trị nhỏ nhất của biểu thức = 16

tại x=-8 

11 tháng 3 2016

Để (x+8)^4  + (x+6)^4 => x = -8.
Thay x = -8 vào biểu thức trên, ta có :
[(-8)+8]^4 + [(-8)+6]^4
=0^4 + (-2)^4
=0 + 16
=16
 

15 tháng 8 2018

Đặt x+7=y

=>\(A=\left(y+1\right)^4+\left(y-1\right)^4=\left(y^4+4y^3+6y^2+4y+1\right)+\left(y^4-4y^3+6y^2-4y+1\right)=2y^4+12y^2+2\ge2\)

Dấu "=" xảy ra <=> y = 0 <=> x = -7

Vậy MinA=2 khi x=-7

27 tháng 9 2016

x + 8 = 0 => x = -8 => A = 16

X +6 = 0 => ...............A = 16

VẬY GTNN A = 16

28 tháng 9 2016

đặt x+7=y.Sau đó thu gọn A theo y. Tìm được GTNN A=2 khi x=-7

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$

$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)

Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$

----------------------

Áp dụng BĐT Bunhiacopkxy:

$A^2\leq (x+4+6-x)(1+1)=10.2=20$

$\Rightarrow A\leq \sqrt{20}$

Vậy $A_{\max}=\sqrt{20}$

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

31 tháng 3 2019

Không biết đúng k nữa:

\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)

\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge2\cdot2+3\cdot2+9=19\)

Vậy Min=19 khi x=y=1