Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 8 = 0 => x = -8 => A = 16
X +6 = 0 => ...............A = 16
VẬY GTNN A = 16
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(D=\left(x+1\right)\left(x+4\right)\left(x^2+5x+8\right)+2021\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+8\right)+2021\)
Đặt \(x^2+5x+6=t\)
Ta có: \(D=\left(t-2\right)\left(t+2\right)+2021\)
\(=t^2-4+2021=t^2+2017\ge2017\forall t\)
Dấu "=" xảy ra khi: \(t=0\)
\(\Rightarrow x^2+5x+6=0\)
\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy GTNN cua D là 2017 khi \(\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Chúc bạn học tốt.
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
Để (x+8)^4 + (x+6)^4 => x = -8.
Thay x = -8 vào biểu thức trên, ta có :
[(-8)+8]^4 + [(-8)+6]^4
=0^4 + (-2)^4
=0 + 16
=16