K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

Để (x+8)^4  + (x+6)^4 => x = -8.
Thay x = -8 vào biểu thức trên, ta có :
[(-8)+8]^4 + [(-8)+6]^4
=0^4 + (-2)^4
=0 + 16
=16
 

11 tháng 3 2016

=0 rồi cái đề như thế cugx hỏi 

11 tháng 3 2016

giá trị nhỏ nhất của biểu thức = 16

tại x=-8 

15 tháng 8 2018

Đặt x+7=y

=>\(A=\left(y+1\right)^4+\left(y-1\right)^4=\left(y^4+4y^3+6y^2+4y+1\right)+\left(y^4-4y^3+6y^2-4y+1\right)=2y^4+12y^2+2\ge2\)

Dấu "=" xảy ra <=> y = 0 <=> x = -7

Vậy MinA=2 khi x=-7

27 tháng 9 2016

x + 8 = 0 => x = -8 => A = 16

X +6 = 0 => ...............A = 16

VẬY GTNN A = 16

28 tháng 9 2016

đặt x+7=y.Sau đó thu gọn A theo y. Tìm được GTNN A=2 khi x=-7

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

20 tháng 9 2018

cho 10 k

21 tháng 9 2018

\(D=\left(x+1\right)\left(x+4\right)\left(x^2+5x+8\right)+2021\)

    \(=\left(x^2+5x+4\right)\left(x^2+5x+8\right)+2021\)

Đặt \(x^2+5x+6=t\)

Ta có: \(D=\left(t-2\right)\left(t+2\right)+2021\)

              \(=t^2-4+2021=t^2+2017\ge2017\forall t\)

Dấu "=" xảy ra khi: \(t=0\)

\(\Rightarrow x^2+5x+6=0\)

\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Vậy GTNN cua D là 2017 khi \(\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Chúc bạn học tốt.

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3