tìm GTNN của biểu thức x\(^2\) - 2xy + 6y\(^2\) - 12x + 2y + 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)
\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)
Vì \(\left(x-y-6\right)^2\ge0\forall x,y\)
\(5.\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
\(P=x^2-2xy+6y^2-12x+3y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)
\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)
\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)
\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10
Vậy min P = 99/20 tại x = 69/10, y = 9/10