cho tam giác abc vuông tại a,đường cao ah.biết bh=9,ch=16 tính đọ dài cạnh ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. + CH = 10 - 3.6 = 6.4 (cm)
- Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :
+ \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)
+ \(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)
+ \(AC^2=BC.CH\)
\(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)
b. \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
c. \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
\(AH=\dfrac{2\cdot AB}{BC}=\dfrac{2\cdot2\sqrt{2}}{4}=\sqrt{2}\left(cm\right)\)
\(BH=CH=\sqrt{AB^2-AH^2}=\sqrt{8-2}=\sqrt{6}\left(cm\right)\)
Ta có : BH + CH = 64 + 81 = 145 (cm)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :
+) \(AB^2=BH.CH\)
\(\Leftrightarrow AB^2=64.145=9280\)
\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)
+) \(AC^2=BC.CH\)
\(\Leftrightarrow AC^2=81.145=11745\)
\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)
Ta có :
\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)
\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )
Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)
Vậy .......
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
a:ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2+6^2=10^2\)
=>\(AH^2+36=100\)
=>\(AH^2=64\)
=>AH=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BC\cdot6=10^2=100\)
=>\(BC=\dfrac{100}{6}=\dfrac{50}{3}\left(cm\right)\)
b: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
c: Xét ΔHAB vuông tại H có HM là đường cao
nên \(HM\cdot AB=HA\cdot HB\)
=>\(HM\cdot10=6\cdot8=48\)
=>HM=48/10=4,8(cm)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot10=8^2=64\)
=>AM=6,4(cm)
AMHN là hình chữ nhật
=>\(S_{AMHN}=HM\cdot AM=4,8\cdot6,4=30,72\left(cm^2\right)\) và \(C_{AMHN}=\left(HM+AM\right)\cdot2=\left(4,8+6,4\right)\cdot2=22,4\left(cm\right)\)
d: Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(AB=BC\cdot sinC\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AC\cdot AB=\dfrac{1}{2}\cdot AC\cdot BC\cdot sinC\)
Ta có: AH^2=9*16=> AH=12
xét tam giac ABH vg có AB^2=AH^+BH^2=>AB=15