K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2021

`ĐK:x>=0`

`=>x+\sqrt{x}>=0`

`=>x+\sqrt{x}+4>=4`

`=>1/(x+\sqrt{x}+4)<=1/4`

`=>A<=12/4=3`

Dấu "=" xảy ra khi `x=0`

1 tháng 3 2021

Ta có: x ≥ 0

⇒x+ \(\sqrt{x}\) ≥0

⇒4+x+\(\sqrt{x}\) ≥4

\(\dfrac{1}{4+x+\sqrt{x}}\le\dfrac{1}{4}\)

\(\dfrac{12}{4+x+\sqrt{x}}\le\dfrac{1}{4}\)

⇒MinA=\(\dfrac{1}{4}\) ⇔x=0

Toàn bị lỗi!

 

23 tháng 5 2021

Đk: \(x\ge0\)

\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)

\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)

Xét P=0 <=> x=0(tm)

Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)

Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)

Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)

\(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)

minP=0 <=> x=0

29 tháng 10 2023

ĐKXĐ: x>=4

\(A=\dfrac{1}{x-4\sqrt{x-4}+3}\)

\(=\dfrac{1}{x-4-4\sqrt{x-4}+4+3}\)

\(=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}\)

\(\left(\sqrt{x-4}-2\right)^2+3>=3\)

=>\(A=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}< =\dfrac{1}{3}\)

Dấu = xảy ra khi \(\sqrt{x-4}-2=0\)

=>x-4=4

=>x=8

\(P=\dfrac{\sqrt{x}+1+3}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

P lớn nhất khi căn x+1=1

=>x=0

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Để $A$ min thì $\sqrt{x}-2$ là số âm lớn nhất

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị âm lớn nhất bằng $-1$

$\Leftrightarrow x=1$

Khi đó: $A_{\min}=\frac{1}{-1}=-1$

Để $A$ max thì $\sqrt{x}-2$ là số dương nhỏ nhất.

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất bằng $1$

$\Leftrightarrow x=9$

Khi đó: $A=\frac{1}{1}=1$

NV
18 tháng 4 2021

Biểu thức đã cho không tồn tại giá trị lớn nhất cũng không tồn tại giá trị nhỏ nhất

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Hai biểu thức này chỉ có min thui bạn nhé.

1.

\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)

\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)

\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)

\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)

Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)

\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)

\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)

Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$

 

 

29 tháng 10 2023

đkxđ: \(z\ge1;x\ge2;y\ge3\)

Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)

\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)

\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)

Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.

Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)

Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.

Xét \(f\left(a\right)\ne0\)

Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\) 

\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)

\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)

\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)

Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).

 Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)

 Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)

\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)

\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)

\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)

Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)

Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)

Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).

29 tháng 10 2023

Cái chỗ cuối mình sửa thế này nhé