K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
1 tháng 3 2021

ta sẽ chứng minh bằng quy nạp

với n=0 ta có \(3^{2n+1}+2^{n+2}=3^1+2^2=7\text{ chia hết cho 7}\)

giả sử điểu trên đúng với n=k tức là \(3^{2k+1}+2^{k+2}\text{ chia hết cho 7}\)

ta chứng minh nó đúng với n=k+1

  ta có \(3^{2\left(k+1\right)+1}+2^{k+1+2}=3^{2k+3}+2^{k+3}=9.3^{2k+1}+2.2^{k+2}=7.3^{2k+1}+2\left(3^{2k+1}+2^{k+2}\right)\)

ta có \(\hept{\begin{cases}7.3^{2k+1}\text{ chia hết cho 7}\\2\left(3^{2k+1}+2^{k+2}\right)\text{ chia hết cho 7}\end{cases}\Rightarrow3^{2\left(k+1\right)+1}+2^{k+1+2}\text{ chia hết cho 7}}\)

Vậy theo nguyên lí quy nạp, ta có đpcm

9 tháng 8 2015

(+) với n là số lẻ => n = 2k 

Thay vào ta có 

n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n 

(+) n là số lẻ => n = 2k + 1 

thay vào ta có :

n(n+3) = (2k+  1 )(2k+ 1 + 3 ) = ( 2k+  1)( 2k + 4 ) = 2 ( k  + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n 

VẬy n(n+3) luôn luôn chia hết cho 2 

 

9 tháng 8 2015

Ta có: n(n+3)=n(n+1+2)

                   =n(n+1)+2n

 Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2

mà 2n cũng chia hết cho 2

=> n(n+3) chia hết cho 2 với mọi n tự nhiên

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

3 tháng 4 2016

ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)

=(133-12).(11mu n)+12.(144 mu n)

=133.(11 mu n)+(144mu n -11 mu n).12

ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)

=>(144 mu n)-(11 mu n)chia het cho 133

=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133