có mấy cặp số nguyên a,b thỏa mãn \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\) và a+b=2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)
\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)
\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)
\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)
Đến đây chắc dễ rồi
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\)
\(\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\)
\(\Leftrightarrow5\left(3a+2b\right)=6\left(a+b\right)\)
\(\Leftrightarrow15a+10b=6a+6b\)
\(\Leftrightarrow\left(6a+6b\right)+9a+4b=6a+6b\)
\(\Leftrightarrow9a+4b=0\)
Ta thấy : \(a\ge0;b\ge0\) ( vì là số tự nhiên )
\(\Rightarrow9a\ge0;\ge4b\ge0\)
\(\Rightarrow9a+4b\ge0\)
Mà \(9a+4b=0\) nên \(\hept{\begin{cases}9a=0\\4b=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
Vậy có 1 cặp số tự nhiên (a ; b) là (0 ; 0)
Có a+b+c=2000 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2000}\)
Suy ra: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\left(a+b\right)\left(\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Mà a+b+c=2000
Với a+b=0 thì c=20000
Với b+c=0 thì a=2000
Với a+c=0 thì b=2000
Vậy trong 3 số a,b,c thì phải có 1 số bằng 2000
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm