Một cục nước đá có thể tích 360cm3 nổi trên mặt nước; biết khối lượng riêng của nước đá là 0,92g/cm3, trọng lượng riêng của nước là 10000N/m3. Thể tích của phần cục đá ló ra khỏi mặt nước là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khối lượng của cục đá: m = D.V = 0,92.360 = 331,2(g)
= 0,3312(kg)
Do đó P = 3,312(N)
Do cục đá nổi trên mặt nước nên P = FA = d.V'
=> V' = \(\frac{P}{d}=\frac{3,312}{10000}=0,0003312\left(m^3\right)=331,2\left(cm^3\right)\)
Vậy thể tích phần nổi trên mặt nước là:
V'' = V - V' = 360 - 331,2 = 28,8(cm3)
Gọi thể tích của cả cục đá là V
Thể tích phần cục đá nổi khỏi mặt nước là V1
D1 là khối lượng riêng của nước
D2 là khối lượng riêng của đá
V = 360 cm3 = 3,6.10-4 (m3)
D2 = 0,92g/cm3 = 920kg/m3
D1 = 1000 kg/m3
Trọng lượng của cục đá là:
P = V.d2 = V.10D2 = 3,6.10-4.10.920= 3,312(N)
Lực đẩy Asimec tác dụng lên phần đá chìm là:
FA = Vch.d1 = (V-V1).10D1 = (3,6.10-4 - V1) .10000
Khi cục nước đá đã cân bằng nổi trên mặt nước thì
P = FA
3,312 = (3,6.10-4 - V1) .10000
=> 3,6.10-4 - V1 =3,312.10-4
=> V1 =2,88.10-5(m3) = 28,8 cm3
Vậy thể tích phần đá nổi lên khỏi mặt nước là 28,8 cm3
Bài 2:
Ta có: FA=P-P'=3,4-2,5=0,9(N)
Mà \(F_A=d.V=10000.V=0,9\)
\(\Rightarrow V=9.10^{-5}\left(m^3\right)\)
a. Trọng lượng của cục nước đá: \(P=dV=9200.360.10^{-6}=3,312\left(N\right)\)
Thể tích phần nước đá nổi trên mặt nước là:
\(V_n=V-V_c=V-\dfrac{F_a}{d_n}=V-\dfrac{P}{d_n}=360.10^{-6}-\dfrac{3,312}{10000}=28,8.10^{-6}\left(m^3\right)=28,8\left(cm^3\right)\)
Thể tích phần nước mà cục đá tan ra hoàn toàn là:
\(V'=\dfrac{P}{d_n}=\dfrac{3,312}{10000}=3,312.10^{-4}\left(m^3\right)=331,2\left(cm^3\right)\)
b. Thể tích của cục nước đá chiếm chỗ trong chất lỏng ban đầu là:
\(V_c=V-V_n=331,2\left(cm^3\right)\)
Vì \(V_c=V'\) nên thể tích của cục nước đá chiếm chỗ trong chất lỏng ban đầu bằng với thể tích nước do cục đá tan ra hoàn toàn.
\(540cm^3=5,4\cdot10^{-4}m^3\)
\(0,92\left(\dfrac{g}{cm^3}\right)=920\left(\dfrac{kg}{m^3}\right)\)
Ta có: \(\left\{{}\begin{matrix}d_{da}=10D_{da}=10\cdot920=9200\left(\dfrac{N}{m^3}\right)\\P=d_{da}\cdot V=9200\cdot5,4\cdot10^{-4}=4,968\left(N\right)\end{matrix}\right.\)
\(\rightarrow F_A=dV_{chim}=10000V_{chim}\)
Khi vật cân bằng trong nước: \(P=F_A\Leftrightarrow4,968=10000V_{chim}\)
\(\rightarrow V_{chim}=4,968\cdot10^{-4}m^3\)
\(\Rightarrow V_{noi}=V-V_{chim}=5,4\cdot10^{-4}-4,968\cdot10^{-4}=4,32\cdot10^{-5}m^3=43,2cm^3\)
\(P=F_A\Leftrightarrow d_{da}.V=d_{nuoc}.V_{chim}\Leftrightarrow D_{da}.V=d_{nuoc}.\left(V-V_{noi}\right)\)
\(\Rightarrow V_{noi}=...\left(m^3\right)\)
\(0,92g/cm^3=9200N/m^3\)
Vì cục đá chỉ chìm 1 phần nên \(F_A=P\)
\(-> d_n.V_C=d_v.V\)
\(->\dfrac{d_n}{d_v}=\dfrac{V}{V_C}\)
\(-> \dfrac{10000}{9200}=\dfrac{V}{V_C}\)
\(-> \dfrac{25}{23}=\dfrac{V}{V_C}\)
\(-> V_C=\dfrac{V}{\dfrac{25}{23}}\)
\(-> V_C=\dfrac{500}{\dfrac{25}{23}}\)
\(-> V_C=460(cm^3)\)
Có \(V_n=V-V_C=500-460=40(cm^3)=4.10^{-5}(m^3)\)
Đổi 360 cm3= 0,00036 m3
Trọng lượng của cục đá là
0,0036.920=3,312 (N)
Thể tích của cục đá là:
\(V=\dfrac{P}{d}=\dfrac{3,312}{1000}=0,000312\left(m^3\right)=331,2\left(cm^3\right)\)
Thể tích của phần cục đá ló khỏi mặt nước là
\(360-331,2=28,8\left(m^3\right)\)
hmm tớ k chắc lắm nhá