Giải phương trình: √2x2+ 7x+ 4= x+ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện của phương trình là 2 x 2 + 3 x - 4 ≥ 0 và 7x + 2 ≥ 0. Ta có:
Phương trình cuối có hai nghiệm x 1 = 3, x 2 = -1, nhưng giá trị x 2 = -1 không thỏa mãn điều kiện của phương tình nên bị loại, giá trị x 1 = 3 nghiệm đúng phương trình đã cho.
Vậy nghiệm của phương trình đa cho là x = 3.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện xác định: x ≠ ±2.
⇒ (x + 1)(x + 2) + (x – 1)(x – 2) = 2(x2 + 2)
⇔ x2 + x + 2x + 2 + x2 – x – 2x + 2 = 2x2 + 4
⇔ 2x2 + 4 = 2x2 + 4
⇔ 0x = 0.
Vậy phương trình nghiệm đúng với mọi x ≠ ±2.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Phương trình bậc hai
2 x 2 – 7 x + 3 = 0
Có: a = 2; b = -7; c = 3;
Δ = b 2 – 4 a c = ( - 7 ) 2 – 4 . 2 . 3 = 25 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là 3 và
b) Phương trình bậc hai 6 x 2 + x + 5 = 0
Có a = 6; b = 1; c = 5;
Δ = b 2 – 4 a c = 12 – 4 . 5 . 6 = - 119 < 0
Vậy phương trình vô nghiệm.
c) Phương trình bậc hai 6 x 2 + x – 5 = 0
Có a = 6; b = 1; c = -5;
Δ = b 2 – 4 a c = 12 – 4 . 6 . ( - 5 ) = 121 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
d) Phương trình bậc hai 3 x 2 + 5 x + 2 = 0
Có a = 3; b = 5; c = 2;
Δ = b 2 – 4 a c = 5 2 – 4 . 3 . 2 = 1 > 0
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
Vậy phương trình có hai nghiệm là -1 và
e) Phương trình bậc hai y 2 – 8 y + 16 = 0
Có a = 1; b = -8; c = 16; Δ = b 2 – 4 a c = ( - 8 ) 2 – 4 . 1 . 16 = 0 .
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :
Vậy phương trình có nghiệm kép y = 4.
f) Phương trình bậc hai 16 z 2 + 24 z + 9 = 0
Có a = 16; b = 24; c = 9; Δ = b 2 – 4 a c = 24 2 – 4 . 16 . 9 = 0
Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:
Vậy phương trình có nghiệm kép
Kiến thức áp dụng
Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.
+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0, phương trình có nghiệm kép ;
+ Nếu Δ < 0, phương trình vô nghiệm.
\(\Leftrightarrow2x^2+7x-x^2-4x=0\)
=>x(x+3)=0
=>x=0
\(\Leftrightarrow2x^2+7x+4=x^2+4x+4\left(x\ge-2\right)\\ \Leftrightarrow x^2+3x=0\\ \Leftrightarrow x\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)