Cho tam giác ABC, I là trung điểm BC. Tìm tập hợp điểm M thỏa mãn \(\mid MA = \mid MB + MC \mid \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi G là trọng tâm tam giác ABC và E là điểm thỏa mãn E A → + 2 E B → - E C → = 0
(điểm E như thế luôn tồn tại duy nhất). Khi đó đẳng thức trên tương đương với 3 M G → = M E → hay 3 M G = M E . Trên đường thẳng GE ta lấy 2 điểm P, Q thỏa mãn 3 P G = P E = 3 Q G = Q E . Khi đó quỹ tích điểm M thỏa mãn yêu cầu là đường tròn đường kính PQ.
(MA+MB)(MC-MB)=0 => MC-MB=0 => MB=MC
=> tg MBC cân tại M
Từ M dựng đường thẳng d vuông góc với BC => d là đường cao của tg cân MBC => d đồng thời là đường trung trực
=> Tập hợp các điểm M thoả mãn đk đề bài là đường thẳng d là đường trung trực của BC
Gọi I là trung điểm BC ⇒ M B → + M C → = 2 M I → .
Ta có M A → M B → + M C → = 0 ⇔ M A → .2 M I → = 0 ⇔ M A → . M I → = 0 ⇔ M A → ⊥ M I → . *
Biểu thức (*) chứng tỏ M A ⊥ M I hay M nhìn đoạn AI dưới một góc vuông nên tập hợp các điểm M là đường tròn đường kính AI.
Chọn D.
\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)
Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.
38.
Gọi I là trung điểm AB và G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)
\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow MI=MG\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG