K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Answer:

\(\left|3x-2\right|=\left|2x-3\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-2=2x-3\\3x-2=-\left(2x-3\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x-2=2x-3\\3x-2=-2x+3\end{cases}}\Rightarrow\orbr{\begin{cases}3x-2x=2-3\\3x-\left(-2x\right)=2+3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

\(\left(2\sqrt{x}+3\right)^2+\frac{1}{4}=\frac{5}{2}\)

\(\Rightarrow\left(2\sqrt{x}+3\right)^2=\frac{9}{4}\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+3=\frac{3}{2}\\2\sqrt{x}+3=\frac{-3}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=\frac{-3}{2}\\2\sqrt{x}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{-3}{4}\\\sqrt{x}=\frac{-9}{4}\end{cases}}\)

Mà \(\sqrt{x}\ge0\)

\(\Rightarrow x\in\varnothing\)

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)

\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)

\(=2x^2+x+1\)

b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)

c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)

\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)

d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)

\(=x^2-2x-5\)

3 tháng 8 2023

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)

\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)

\(\Rightarrow x\left(6x-2-15-6x\right)\)

\(\Rightarrow-16x=0\)

\(\Rightarrow x=0\)

d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)

\(\Rightarrow9x^2-4-4x+4=0\)

\(\Rightarrow9x^2-4x=0\)

\(\Rightarrow x\left(9x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

3 tháng 8 2023

\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

3 tháng 8 2020

Bài 1:

a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)

\(=12x^2-4x-6x-2-x-3\)

\(=12x^2-11x-5\)

b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)

\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)

\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)

\(=2x^4y+1x^3y^2-2x^2y^3\)

c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)

\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)

\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)

\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)

\(=-48x^3-8x^2-24x^4+15x-9\)

3 tháng 8 2020

Bài 2 ạ

17 tháng 2 2020

a) \(\left(3x-1\right)\left(x+3\right)=\left(2-x\right)\left(5-3x\right)\)

\(\Leftrightarrow3x^2+8x-3=3x^2-11x+10\)

\(\Leftrightarrow19x-13=0\)

\(\Leftrightarrow x=\frac{13}{19}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{13}{19}\right\}\)

b) \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+9x-5=2x^2-x-3\)

\(\Leftrightarrow10x-2=0\)

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{5}\right\}\)

c) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)

17 tháng 2 2020

d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{33}\right\}\)

e) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)

\(\Leftrightarrow6x-4=-6x+8\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

f) \(\left(x+1\right)\left(2x-3\right)-\left(3x-2\right)=2\left(x-1\right)^2\)

\(\Leftrightarrow2x^2-x-3-3x+2=2\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2-4x-1=2x^2-4x+2\)

\(\Leftrightarrow-1=2\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

26 tháng 3 2020

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

28 tháng 7 2021

có sai đecc ko bạn.......gianroi