Cho tam giác ABC có ba góc nhọn , đường thẳng AH vuông góc với BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
Chứng minh rằng CA = CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
Do đó: ΔCHA=ΔCHD
Suy ra: CA=CD
https://h.vn/hoi-dap/question/143424.html
Bn tham khảo nhé
#học tốt#
a) Xét ΔABH và ΔDBH có:
BH:cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=>ΔABH=ΔDBH(c.g.c)
=>\(\widehat{ABH}=\widehat{DBH}\)
=>BC là tia pg của \(\widehat{ABD}\)
b)Xét ΔAHC và ΔDHC có:
AH=DH(gt)
\(\widehat{AHC}=\widehat{DHC}=90^o\)
HC:cạnh chung
=>ΔAHC=ΔDHC(c.g.c)
=>CA=CD
Trần Việt Linh ơi ,bạn vẽ hình kiểu gì zậy ,chỉ cho mìn với! thanks bạn vì câu trả lời nhé!
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
a). Xét tam giác ABH vuông tại H và tam giác DBH vuông tại H có:
AH=DH (GT)
BH là cạnh chung.
=> Tam giác ABH=tam giác DBH (hai cạnh góc vuông).
=> Góc ABH=góc DBH
=> BC là phân giác của góc ABD
Xét tam giác CAH vuông tại H và tam giác CDH vuông tại H có:
AH=DH (GT)
CH là cạnh chung.
=> Tam giác CAH=tam giác CDH (2 cạnh góc vuông)
=> Góc ACH=góc DCH
=> CB là phân giác của góc ACD
b). Vì tam giác ABH=tam giác DBH => BA=BD
Vì tam giác CAH=tam giác CDH => CA=CD
Bạn tự vẽ hình nha
a.
Xét tam giác ABH và tam giác DBH có:
AH = DH (gt)
AHB = DHB ( = 900)
HB là cạnh chung
=> Tam giác ABH = Tam giác DBH (c.g.c)
=> ABH = DBH (2 góc tương ứng)
=> BH là tia phân giác của ABD
Xét tam giác ACH và tam giác DCH có:
AH = DH (gt)
AHC = DHC ( = 900)
HC là cạnh chung
=> Tam giác ACH = Tam giác DCH (c.g.c)
=> ACH = DCH (2 góc tương ứng)
=> CH là tia phân giác của ACD
b.
CA = CD (Tam giác ACH = Tam giác DCH)
BD = BA (Tam giác ABH = Tam giác DBH)
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài
1 thì em chưa học đến tam giác cân
1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
Do đó: ΔHAC=ΔHDC
Suy ra: CA=CD
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
Gọi U là giao điểm của AD và BC.