K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Áp dụng bất đẳng thức cô si cho 2 số thực không âm ta có:

\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\times4\left(y-1\right)}=4x\) (1)

\(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\times4\left(x-1\right)}=4y\) (2)

Cộng (1) và (2) vế theo vế , ta được:

\(P+4y-4+4x-4\ge4x+4y\)

\(\Rightarrow P\ge8\)

Dấu "\(=\)" xảy ra khi : \(x=y=2\)

Vậy giá trị nhỏ nhất của P=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\) là 8 khi \(x=y=2\)

24 tháng 1 2017

Cần chứng minh \(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\) thật vậy:

Đặt \(\left\{\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)\(\left(a,b>0\right)\) ta có bđt cần cm tương đương:

\(\Leftrightarrow\left(a^2+2a+1\right)a+\left(b^2+2b+1\right)b\ge8ab\)

\(\Leftrightarrow\)\(a^3+2a^2+a+b^3+2b^2+b\ge8ab\)

Áp dụng BĐT AM-GM ta có:

\(2a^2+2b^2\ge2\sqrt{2a^2\cdot2b^2}=4ab\)

\(a^3+b^3+a+b\ge4\sqrt[4]{a^4b^4}=4ab\)

Cộng theo vế ta có đpcm

Vậy GTNN của BT là 8

22 tháng 7 2019

a) 2x - 1 + 2x + 1 = 20

=> 2x : 2 + 2x . 2 = 20

=> 2x . 1/2 + 2x . 2 = 20

=> 2x.(1/2 + 2)        = 20

=> 2x . 5/2               = 20

=> 2x                        = 20 : 5/2

=> 2x                         = 8

=> 2x                          = 23

=>   x                          = 3

14 tháng 5 2022

y.(1/2+1/6+1/12+1/20)=8/5

y.4/5=8/5

y=8/5:4/5

y=8/5.5/4

y=2

14 tháng 5 2022

\(y\times\dfrac{1}{2}+y\times\dfrac{1}{6}+y\times\dfrac{1}{12}+y\times\dfrac{1}{20}=\dfrac{8}{5}\)

\(y\times\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}\right)=\dfrac{8}{5}\)

\(y\times\dfrac{4}{5}=\dfrac{8}{5}\)

\(\dfrac{8}{5}:\dfrac{4}{5}\)

\(y=\dfrac{8}{4}=2\)

1 tháng 12 2019

Câu 1: \(B.\frac{5}{8}\)

Câu 2: \(C.x=20;y=12\)

Câu 3: \(B.\frac{1}{4}\)

30 tháng 6 2017

Áp dụng BĐT Mincopxki và AM-GM ta có:

\(P=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{9}{x+y+z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\dfrac{81}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\dfrac{1}{\left(x+y+z\right)^2}+\dfrac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\dfrac{1}{\left(x+y+z\right)^2}}+80}\)

\(\ge\sqrt{2+80}=\sqrt{82}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)